Electrical Properties of Cells at Rest and Maintenance of the Ion Distributions

  • Nicholas Sperelakis
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 34)


Cardiac muscle is a unique excitable tissue. The peculiar electrical properties of heart muscle determine the special mechanical properties of the heart, enabling it to serve as an effective pump for circulating the blood. The entire ventricle is rapidly activated, within several hundredths of a second, by virtue of the rapidly conducting (2–3 m/s) specialized Purkinje fiber system and by rapid propagation (0.3–0.4 m/s) through the myocardium. The ventricular myocardium normally contracts in an all-ornone manner because of the rapid spread of excitation throughout the muscle. Cardiac muscle cannot normally be tetanized because of the long functional refractory period resulting from the long-duration action potential. The long-duration plateau component of the action potential allows the mechanical active state to be maximally developed and maintained for a sufficiently long period.


Sarcoplasmic Reticulum Relative Permeability Myocardial Cell Equilibrium Potential Electrochemical Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jam MK: The bimolecular lipid membrane: a system. New York: Van Nostrand, 1972.Google Scholar
  2. 2.
    Henn FA, Sperelakis N: Stimulative and protective action of Sr2+ and Bat+ on (Na+, K+)-ATPase from cultured heart cells. Biochem Biophys Acta 163: 415–417, 1968.PubMedCrossRefGoogle Scholar
  3. 3.
    Sperelakis N: Handbook of physiology. Berne RM, Sperelakis N (eds) Vol 1: The cardiovascular system. Bethesda: American Physiological Society, 1979, pp 187–267.Google Scholar
  4. 4.
    Dhalla NS, Ziegelhoffer A, Hazzow JA: Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55: 1211–1234, 1977.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones LR, Maddock SW, Besch HR Jr: Unmasking effect of alamethicin on the (Na+, K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. J Biol Chem 255: 9971–9980, 1980.PubMedGoogle Scholar
  6. 6.
    Daniel EE, Kwan CY, Matlib MA, Crankshaw D, Kidwai A: Characterization and Cat+ -accumulation by membrane fractions from myometrium and artery. In: Casteels R, Godfraind T, Ruegg JC (eds) Excitation—contraction coupling in smooth muscle. Amsterdam: Elsevier/North-Holland, 1977, pp 181–188.Google Scholar
  7. 7.
    Glitsch HG: Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions. J Physiol (Lond) 220: 565–582, 1972.Google Scholar
  8. 8.
    Page E, Storm SR: Cat heart muscle in vitro. VIII. Active transport of sodium in papillary muscles. J Gen Physiol 48: 957–972, 1965.PubMedCrossRefGoogle Scholar
  9. 9.
    McDonald TF, MacLeod DP: Maintenance of resting potential in anoxic guinea pig ventricular muscle: electrogenic sodium pumping. Science 172: 570–572, 1971.PubMedCrossRefGoogle Scholar
  10. 10.
    Noma A, Irisawa H: Electrogenic sodium pump in rabbit sinoatrial node cell. Pflugers Arch Eur J Physiol 351: 177–182, 1974.CrossRefGoogle Scholar
  11. 11.
    Vassalle M: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ Res 27: 361–377, 1970.PubMedCrossRefGoogle Scholar
  12. 12.
    Pelleg A, Vogel S, Belardinelli L, Sperelakis N: Overdrive suppression of automaticity in cultured chick myocardial cells. Am J Physiol 238: H24 - H30, 1980.PubMedGoogle Scholar
  13. 13.
    Sperelakis N, Schneider M, Harris EJ: Decreased K+ conductance produced by Ba+ in frog sartorius fibers. J Gen Physiol 50: 1565–1583, 1967.PubMedCrossRefGoogle Scholar
  14. 14.
    Cole KS: Membranes, ions and impulses: a chapter of classical biophysics. Berkeley: University of California, 1968.Google Scholar
  15. 15.
    Trautwein W, Kassebaum DG: On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol 45: 317–330, 1961.PubMedCrossRefGoogle Scholar
  16. 16.
    Sperelakis N, Lehmkuhl D: Effect of current on transmembrane potentials in cultured chick heart cells. J Gen Physiol 47: 895–927, 1964.PubMedCrossRefGoogle Scholar
  17. 17.
    Sperelakis N, Lehmkuhl D: Effects of temperature and metabolic poisons on membrane potentials of cultured heart cells. Am J Physiol 213: 719–724, 1967.PubMedGoogle Scholar
  18. 18.
    Sperelakis N: Electrophysiology of cultured chick heart cells. In: Sano T, Mizuhira V (eds) Electrophysiology and ultrastructure of the heart.Google Scholar
  19. 19.
    Sperelakis N: (Na+,K+)-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochem Biophys Acta 266:230–237, 1972.Google Scholar
  20. 20.
    Ferrier GR, Moe GK: Effects of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ Res 33: 508–515, 1973.PubMedCrossRefGoogle Scholar
  21. 21.
    Kass RS, Tsien RS, Weingart R: Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 281: 209–226, 1978.Google Scholar
  22. 22.
    Sperelakis N, Lehmkuhl D: Ionic interconversion of pacemaker and nonpacemaker cultured chick heart cells. J Gen Physiol 49: 867–895, 1966.PubMedCrossRefGoogle Scholar
  23. 23.
    Hermsmeyer K, Sperelakis N: Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++. Am J Physiol 219: 1108–1114, 1970.PubMedGoogle Scholar
  24. 24.
    Katzung BG: Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea papillary muscle. Circ Res 37: 118–127, 1975.PubMedCrossRefGoogle Scholar
  25. 25.
    Imanishi S, Surawicz B: Automatic activity in depolarized guinea pig ventricular myocardium. Circ Res 39: 751–759, 1976.PubMedCrossRefGoogle Scholar
  26. 26.
    Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264: 49–62, 1977.Google Scholar
  27. 27.
    Vassalle M: Cardiac pacemaker potentials at different extra-and intracellular K concentrations. Am J Physiol 208: 770–775, 1965.PubMedGoogle Scholar
  28. 28.
    Noble D: Initiation of the heartbeat. Oxford: Clarendon, 1975.Google Scholar
  29. 29.
    Irisawa H: Comparative physiology of the cardiac pacemaker mechanism. Physiol Rev 58: 461–498, 1978.PubMedGoogle Scholar
  30. 30.
    Carmeliet E, Vereecke J: Electrogenesis of the action potential and automaticity. In: Berne RM, Sperelakis N (eds) Handbook of physiology. Bethesda: American Physiological Society, 1979, pp 269–334.Google Scholar
  31. 31.
    Vassalle M: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ Res 27: 361–377, 1970.PubMedCrossRefGoogle Scholar
  32. 32.
    Josephson I, Sperelakis N: On the ionic mechanism underlying adrenergic-cholinergic antagonism in ventricular muscle. J Gen Physiol 79: 69–86, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    New W, Trautwein W: Inward membrane currents in mammalian myocardium. Pflugers Arch 334: 123, 1972.Google Scholar
  34. 34.
    McDonald TF, Trautwein W: Membrane currents in cat myocardium: separation of inward and outward components. J Physiol 274: 193–216, 1978.PubMedGoogle Scholar
  35. 35.
    McDonald TF, MacLeod DP: Metabolism and the electrical activity of anoxic ventricular muscle. J Physiol 229: 559–582, 1973.PubMedGoogle Scholar
  36. 36.
    Schneider JA, Sperelakis N: The demonstration of energy dependence of isoproterenol-induced trans-cellular Cat+ current in isolated perfused guinea pig hearts-an explanation for mechanical failure of ischemic myocardium. J Surg Res 16: 389–403, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Sperelakis N, Schneider JA: A metabolic control mechanism for calcium ion influxes that may protect the ventricular myocardial cell. Am J Cardiol 37: 1079–1085, 1976.PubMedCrossRefGoogle Scholar
  38. 38.
    Vluegels A, Carmeliet E, Bosteels S, Zaman M: Differential effects of hypoxia with age on the chick embryonic heart. Pflugers Arch 365: 159–166, 1976.CrossRefGoogle Scholar
  39. 39.
    Meech RW: Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol 42A: 493–499, 1972.CrossRefGoogle Scholar
  40. 40.
    Isenberg G: Is potassium conductance of cardiac Purkinje fibres controlled by [Ca2+] Nature (Lond) 253: 273–274, 1975.Google Scholar
  41. 41.
    Bassingwaighte JB, Fry CH, McGuigan JAS: Relationship between internal calcium and outward current in mammalian ventricular muscle: a mechanism for the control of the action potential duration? J Physiol 262: 15–37, 1976.Google Scholar
  42. 42.
    Singer SJ, Nicolson GL: The fluid mosaic model of the structure of cell membranes. Science 175: 720–731, 1972.PubMedCrossRefGoogle Scholar
  43. 43.
    Sperelakis N: Changes in membrane electrical properties during development of the heart. In: Zipes DP, Bailey JC, Elharrar V (eds) The slow inward current and cardiac arrhythmias. The Hague: Martinus Nijhoff, pp 221–262, 1980.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1984

Authors and Affiliations

  • Nicholas Sperelakis

There are no affiliations available

Personalised recommendations