Effects of Cardiotoxins on Membrane Ionic Channels

  • M. Lazdunski
  • J. F. Renaud
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 34)


Various ionic currents and conductance changes underlie the normal electrogenesis and automacity of the heart. A number of drugs and therapeutic agents act on the membranes of myocardial cells in a more or less specific manner on sodium, calcium, and potassium channels.


Sodium Channel Cardiac Cell Positive Inotropic Effect Purkinje Fiber Scorpion Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lazdunski M, Renaud JF: The action of cardiotoxins on cardiac plasma membranes. Annu Rev Physiol 44: 463–473, 1982.PubMedCrossRefGoogle Scholar
  2. 2.
    Howard BD, Gunderson CB Jr: Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu Rev Pharmacol 20: 307–336, 1980.CrossRefGoogle Scholar
  3. 3.
    Narahashi T: Chemicals as tools in the study of excitable membranes. Physiol Rev 54: 813–889, 1974.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz JR, Ulbricht W, Wagner HH: The rate of action of tetrodotoxin on myelinated nerve fibers of Xenopus Laevis and Rana esculenta. J Physiol (Lond) 233: 167–194, 1973.Google Scholar
  5. 5.
    Cuervo LA, Adelman WJ: Equilibrium and kinetic properties of interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J Gen Physiol 55: 309–355, 1970.PubMedCrossRefGoogle Scholar
  6. 6.
    Ritchie JM, Rogart RB: The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev Physiol Biochem Pharmacol 79: 1–50, 1977.PubMedCrossRefGoogle Scholar
  7. 7.
    Chicheportiche R, Balerna M, Lombet A, Romey G, Lazdunski M: Synthesis of new, highly radioactive tetrodotoxin derivatives and their binding ‘ properties to the sodium channel. Eur J Biochem 104: 617–625, 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Chicheportiche R, Balerna M, Lombet A, Romey G, Lazdunski M: Synthesis and mode of action on axonal membranes of photoactivable derivatives of tetrodotoxin. J Biol Chem 254: 1552–1557, 1979.PubMedGoogle Scholar
  9. 9.
    Ritchie JM: The sodium channel as a drug receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. New York: Raven, 1978, pp 227–242.Google Scholar
  10. 10.
    Baker PF, Rubinson KA: Chemical modification of crab nerves can make them insensitive to the local anaesthetics tetrodotoxin and saxitoxin. Nature 257: 412–414, 1975.PubMedCrossRefGoogle Scholar
  11. 11.
    Reed JK, Raftery MA: Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry 15: 944–953, 1976.PubMedCrossRefGoogle Scholar
  12. 12.
    Shrager P, Profera C: Inhibition of the receptor for tetrodotoxin in nerve membranes by reagents modifying carboxyl groups. Biochim Biophys Acta 318: 141–146, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Sigworth FJ, Spalding BC: Chemical modification reduces the conductance of sodium channels in nerve. Nature 283: 293–295, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Spalding BC: Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle. J Physiol (Lond) 305: 485–500, 1980.Google Scholar
  15. 15.
    Moore HPH, Fritz LC, Raftery MA, Brockes JP: Isolation and characterization of a monoclonal antibody against the saxitoxin-binding component from the electric organ of the eel Electrophorus electricus. Proc Natl Acad Sci USA 79: 1673–1677, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Hartshorne RP, Catterall WA: Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci USA 78: 4620–4624, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Barchi RL, Murphy LE: Size characteristics of the solubilized sodium channel saxitoxin binding site from mammalian sarcolemma. Biochim Biophys Acta 597: 391–398, 1980.PubMedCrossRefGoogle Scholar
  18. 18.
    Levinson SR, Ellory JC: Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation. Nature [New Biol} 245: 122–123, 1973.CrossRefGoogle Scholar
  19. 19.
    Barhanin J, Schmid A, Lombet A, Wheeler KP, Lazdunski M, Ellory J: Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel. J Biol Chem 258: 700–702, 1983.PubMedGoogle Scholar
  20. 20.
    Dudel J, Peper K, Rüdel R, Trautwein W: The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Plugers Arch 295: 213–226, 1967.CrossRefGoogle Scholar
  21. 21.
    Cohen CJ, Bean BP, Colatsky TJ, Tsien RW: Tetrodotoxin block of sodium channels in rabbit purkinje fibers. J Gen Physiol 78: 383–411, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Baer M, Best PM, Reuter H: Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature 263: 344–345, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Colatsky TJ, Gadsby DC: Is tetrodotoxin block of background sodium channels in canine cardiac Purkinje fibres voltage-dependent? J Physiol (Lond) 306: 20P, 1980.Google Scholar
  24. 24.
    Gadsby DC, Colatsky TJ: Kinetics and voltage-independence of tetrodotoxin (TTX) block of background sodium channels in dog cardiac Purkinje fibers. Fed Proc 39: 2076, 1980.Google Scholar
  25. 25.
    Sauviat MP: Le canal sodium des fibres atriales de grenouille. Mode d’action de la tétrodotoxine et de l’ervatamine. Thesis, University of Orsay, 1980.Google Scholar
  26. 26.
    Coraboeuf E, Deroubaix E, Coulombe A: Effect of tetrodotoxin on action potential of the conducting system in the dog heart. Am J Physiol 236: 56 1567, 1979.Google Scholar
  27. 27.
    Lombet A, Renaud JF, Chicheportiche R, Lazdun ski M: A cardiac tetrodotoxin binding component: biochemical identification, characterization, and properties. Biochemistry 20: 1279–1285, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Catterall WA, Coppersmith J: Pharmacological properties of sodium channels in cultured rat heart cells. Mol Pharmacol 20: 533–542, 1981.PubMedGoogle Scholar
  29. 29.
    Renaud JF, Kazazoglou T, Lombet A, Chicheportiche R, Jaimovich E, Romey G, Lazdunski: The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J Biol Chem 258: 8799–8805, 1983.PubMedGoogle Scholar
  30. 30.
    Jourdon P, Sperelakis N: Electrical properties of cultured heart cell reaggregates from newborn rat ventricles: comparison with intact non-cultured ventricles. J Mol Cell Cardiol 12: 1441–1458, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Lombet A, Frelin C, Renaud JF, Lazdunski M: Na+ channels with binding sites of high and low affinity for tetrodotoxin in different excitable and non-excitable cells. Eur J Biochem 124: 199–203, 1982.PubMedCrossRefGoogle Scholar
  32. 32.
    Harris JB, Thesleff S: Studies on tetrodotoxin-resistant action potentials in denervated skeletal muscle. Acta Physiol Scand 83: 382–388, 1971.PubMedCrossRefGoogle Scholar
  33. 33.
    Catterall WA: Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20: 15–43, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Kupchan SM, By AW: Steroid alkaloids; the veratrum group. In: Manske RHF (ed) Alkaloids, vol 10. New York: Academic, 1968, pp 193–285.Google Scholar
  35. 35.
    Albuquerque EX, Daly JW: Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In: Chapman and Hall (eds) The specificity and action of animal, bacterial and plant toxins. 1976.Google Scholar
  36. 36.
    Khodorov BI, Revenko SV: Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve. Neuroscience 4: 1315 1330, 1979.Google Scholar
  37. 37.
    Schmidt H, Schmitt O: Effect of aconitine on the sodium permeability of node of Ranvier. Pflugers Arch 349: 133–148, 1974.PubMedCrossRefGoogle Scholar
  38. 38.
    Ulbricht W: The effect of veratridine on excitable membranes of nerve and muscle. Erg Physiol 61: 18–71, 1969.PubMedGoogle Scholar
  39. 39.
    Lazdunski M, Balerna M, Barhanin J, Chicheportiche R, Fosset M, Frelin C, Jacques Y, Lombet A, Pouysségur J, Renaud JF, Romey G, Schweitz H, Vincent JP: Molecular aspects of the structure and mechanism of the voltage-dependent sodium channel. Ann N Y Acad Sci 358: 169–182, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Mozhayeva GN, Naumov AP, Negulyaev YA, Nosyreva ED: The permeability of aconitine-modified sodium channels to univalent cations in myelinated nerve. Biochim Biophys Acta 466: 461–473, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Jacques Y, Fosset M, Lazdunski M: Molecular properties of the action potential Na+ ionophore in neuroblastoma cells. J Biol Chem 253: 7383–7392, 1978.PubMedGoogle Scholar
  42. 42.
    Honerjäger P: Cardioactive substances that prolong the open state of sodium channel. Rev Physiol Biochem Pharmacol 92: 1–74, 1981.CrossRefGoogle Scholar
  43. 43.
    Renaud JF, Romey G, Lombet A, Lazdunski M: Differentiation of the fast sodium channel in embryonic heart cells followed by its interaction with neurotoxins. Proc Natl Acad Sci USA 78: 5348–5352, 1981.PubMedCrossRefGoogle Scholar
  44. 44.
    Kakisawa H, Kozima T, Yanai M, Nakanishi K: Stereochemistry of grayanotoxins. Tetrahedron Lett 21: 3091–3104, 1965.Google Scholar
  45. 45.
    Kumazawa Z, Iriye R: Stereochemistry of grayanotoxin II. Tetrahedron Lett 12: 927–930, 1970.PubMedCrossRefGoogle Scholar
  46. 46.
    Catterall WA: Activation of the action potential Na ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J Biol Chem 250: 40534059, 1975.Google Scholar
  47. 47.
    Horackova M, Vassort G: Ionic mechanism of isotropic effect of veratrine on frog heart. Pflugers Arch 341: 281–284, 1973.PubMedCrossRefGoogle Scholar
  48. 48.
    Horackova M, Vassort G: Excitation-contraction coupling in frog heart: effect of veratrine. Pflugers Arch 352: 291–302, 1974.PubMedCrossRefGoogle Scholar
  49. 49.
    Peper K, Trautwein W: The effect of aconitine on the membrane current in cardiac muscle. Pflugers Arch 296: 328–336, 1967.CrossRefGoogle Scholar
  50. 50.
    Hogan PM, Albuquerque EX: The pharmacology of batrachotoxin III. Effect on the heart Purkinje fibers. J Pharmacol Exp Ther 176: 529–537, 1971.PubMedGoogle Scholar
  51. 51.
    Honerjäger P, Reiter M: The cardiotoxic effect of batrachotoxin. Naunyn Schmiedebergs Arch Pharmacol 299: 239–252, 1977.PubMedCrossRefGoogle Scholar
  52. 52.
    Shotzberger GS, Albuquerque EX, Daly JW: The effects of batrachotoxin on cat papillary muscle. J Pharmacol Exp Ther 196: 433–444, 1976.PubMedGoogle Scholar
  53. 53.
    Sperelakis N, Pappano AJ: Increase in PNa and PK of cultured heart cells produced by veratridine. J Gen Physiol 53: 97–114, 1969.PubMedCrossRefGoogle Scholar
  54. 54.
    Fosset M, De Barry J, Lenoir MC, Lazdunski M: Analysis of molecular aspects of Na+ and Cat+ uptakes by embryonic cardiac cells in culture. J Biol Chem 252: 6112–6117, 1977.PubMedGoogle Scholar
  55. 55.
    Akera T, Ku DD, Frank M, Brody TM, Iwasa J: Effects of grayanotoxin I on cardiac Na+ K+ adenosine triphosphatase activity, transmembrane potential and myocardiac contractile force. J Pharmacol Exp Ther 247: 199–254, 1976.Google Scholar
  56. 56.
    Ku DD, Akera T, Frank M, Brody TM, Iwasa J: The effects of grayanotoxin I and cr-dihydrograyanotoxin II on guinea-pig myocardium. J Pharmacol Exp Ther 200: 363–372, 1977.PubMedGoogle Scholar
  57. 57.
    Seyama I: Effect of grayanotoxin I on sa node and right atrial myocardia of the rabbit. Am J Physiol 235: C136 - C142, 1978.PubMedGoogle Scholar
  58. 58.
    Hotta Y, Takeya K, Kobayashi S, Harada N, Sakakibara J, Shirai N: Relationship between structure, positive inotropic potency and lethal dose of grayanotoxins in guinea pig. Arch Toxicol 44: 259–267, 1980.PubMedCrossRefGoogle Scholar
  59. 59.
    Honerjäger P, Frelin C, Lazdunski M: Actions, interactions and apparent affinities of various ceveratrum alkaloids at sodium channels of cultured neuroblastoma and cardiac cells. Naunyn Schmiedebergs Arch Pharmacol 321: 123–129, 1982.PubMedCrossRefGoogle Scholar
  60. 60.
    Reuter H: Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol 26: 143, 1973.CrossRefGoogle Scholar
  61. 61.
    Reuter H: Exchange of calcium ions in the mammalian myocardium: mechanisms and physiological significance. Circ Res 34: 599–605, 1974.PubMedCrossRefGoogle Scholar
  62. 62.
    Romey G, Lazdunski M: Lipid-soluble toxins thought to be specific for Na+ channels block Cat+ channels in neuronal cells. Nature 297: 79–80, 1982.PubMedCrossRefGoogle Scholar
  63. 63.
    Rochat H, Bernard P, Couraud F: Scorpion toxins: chemistry and mode of action. Adv Cytopharmacol 3: 325–334, 1979.PubMedGoogle Scholar
  64. 64.
    Sampieri F, Habersetzer-Rochat C: Structure-function relationships in scorpion neurotoxins: identification of the superreactive lysine residue in toxin I of Androctonus australis Hector. Biochim Biophys Acta 535: 100–109, 1978.PubMedCrossRefGoogle Scholar
  65. 65.
    Romey G, Chicheportiche R, Lazdunski M, Rochat H, Miranda F, Lissitzky S: Scorpion neurotoxin a presynaptic toxin which affects both Na+ and K+ channel in axons. Biochem Biophys Res Commun 64: 115–121, 1975.PubMedCrossRefGoogle Scholar
  66. 66.
    Mozhayeva GN, Naumov AP, Nosyreva ED, Grishin EV: Potential-dependent interaction of toxin from venom of the scorpion Buthus Eupus with sodium channels in myelinated fibre. Biochim Biophys Acta 597: 587–602, 1980.PubMedCrossRefGoogle Scholar
  67. 67.
    Gillespie JI, Meves H: The effect of scorpion venoms on the sodium currents of the squid giant axon. J Physiol 308: 479–499, 1980.PubMedGoogle Scholar
  68. 68.
    Schweitz H, Vincent JP, Barhanin J, Frelin C, Linden G, Hugues M, Lazdunski M: Purification and pharmacological properties of eight sea anemone toxins from Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus and Actinodendron plumosum. Biochemistry 20: 5245–5252, 1981.PubMedCrossRefGoogle Scholar
  69. 69.
    Martinez G, Kopeyan C, Schweitz H, Lazdunski M: Toxin III from Ammonia sulcata: primary structure. FEBS Lett 84: 247–252, 1977.PubMedCrossRefGoogle Scholar
  70. 70.
    Tanaka M, Haniu M, Yasunobu KT, Norton TR: Amino acid sequence of the Anthopleura xanthogrammica heart stimulant, Anthopleurin A. Biochemistry 16: 204–208, 1977.PubMedCrossRefGoogle Scholar
  71. 71.
    Wunderer G, Fritz H, Wachter E, Machleidt W: Amino-acid sequence of a coelenterate toxin: toxin II from Anemonia sulcata. Eur J Biochem 68: 193198, 1976.Google Scholar
  72. 72.
    Wunderer G, Eulitz M: Amino acid sequence of toxin I from Anemonia sulcata. Eur J Biochem 89: 11–17, 1978.PubMedCrossRefGoogle Scholar
  73. 73.
    Barhanin J, Hugues M, Schweitz H, Vincent JP, Lazdunski M: Structure-function relationship of sea anemone toxin II from Anemonia sulcata. J Biol Chem 256: 5764–5769, 1980.Google Scholar
  74. 74.
    Bergman C, Dubois JM, Rojas E, Rathmayer W: Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim Biophys Acta 455: 175–184, 1976.Google Scholar
  75. 75.
    Romey G, Abita JP, Schweitz H, Wunderer G, Lazdunski M: Sea anemone toxin: a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc Natl Acad Sci USA 73: 4055–4059, 1976.PubMedCrossRefGoogle Scholar
  76. 76.
    Jacques Y, Fosset M, Lazdunski M: Molecular properties of the action potential Na+ ionophore in neuroblastoma cells: interactions with neurotoxins. J Biol Chem 253: 7383–7392, 1978.PubMedGoogle Scholar
  77. 77.
    Cahalan MD: Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J Physiol (Lond) 244: 511–534, 1975.Google Scholar
  78. 78.
    Ray R, Morrow CS, Catterall W: Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J Biol Chem 253: 7307–7317, 1978.PubMedGoogle Scholar
  79. 79.
    Vincent JP, Balerna M, Barhanin J, Fosset M, Lazdunski M: Binding of sea-anemone toxin to receptor sites associated with the gating system of the sodium channel in synaptic nerve endings in vitro. Proc Natl Acad Sci USA 77: 1646–1650, 1980.PubMedCrossRefGoogle Scholar
  80. 80.
    Catterall WA: Membrane potential-dependent binding of scorpion toxin to the action potential sodium ionophore: studies with a toxin derivative prepared by lactoperoxidase catalyzed iodination. J Biol Chem 252: 8660–8668, 1977.PubMedGoogle Scholar
  81. 81.
    Coraboeuf E, Deroubaix E, Tazieff-Depierre F: Effect of toxin II isolated from scorpion venom on action potential and contraction of mammalian heart. J Mol Cell Cardiol 7: 643–653, 1975.PubMedCrossRefGoogle Scholar
  82. 82.
    Ravens U: Electromechanical studies of an Anemonia sulcata toxin in mammalian cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol 296: 73–78, 1976.PubMedCrossRefGoogle Scholar
  83. 83.
    Romey G, Renaud JF, Fosset M, Lazdunski M: Pharmacological properties of the interaction of a sea anemone polypeptide toxin with cardiac cells in culture. J Pharmacol Exp Ther 213: 607–615, 1980.PubMedGoogle Scholar
  84. 84.
    Shibata S, Izumi T, Seriguchi DG, Norton TR: Further studies on the positive inotropic effect of the polypeptide anthopleurin A from a sea anemone. J Pharmacol Exp Ther 205: 683–692, 1978.PubMedGoogle Scholar
  85. 85.
    Couraud F, Rochat H, Lissitzky S: Binding of scorpion neurotoxins to chick embryonic heart cells in culture and relationship to calcium uptake and membrane potential. Biochemistry 19: 457–462, 1980.PubMedCrossRefGoogle Scholar
  86. 86.
    Alsen C, Beress L, Fischer K, Proppe D, Reinberg T, Sattler RW: The action of a toxin from the sea anemone Anemonia sulcata upon mammalian heart muscles. Naunyn Schmiedebergs Arch Pharmacol 295: 55–62, 1976.PubMedCrossRefGoogle Scholar
  87. 87.
    Shibata S, Norton TR, Izumi T, Matsuo T, Katsuki S: A polypeptide (AP.A) from sea anemone (Anthopleura xanthogrammica) with potent positive isotropic action. J Pharmacol Exp Ther 199: 298–309, 1976.PubMedGoogle Scholar
  88. 88.
    Couraud F, Rochat H, Lissitzky S: Stimulation of sodium and calcium uptakes by scorpion toxin in chick embryo heart cells. Biochim Biophys Acta 433: 90–100, 1976.PubMedCrossRefGoogle Scholar
  89. 89.
    Fujiwara M, Muramatsu I, Hidaka H, Ikushima S, Ashida K: Effects of goniopora toxin, a polypeptide isolated from coral, on electromechanical properties of rabbit myocardium. J Pharmacol Exp Ther 210: 153–157, 1979.PubMedGoogle Scholar
  90. 90.
    Jaimovich E, Ildefonse M, Barhanin J, Rougier O, Lazdunski M: Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor. Proc Natl Acad Sci USA 79: 38963900, 1982.Google Scholar
  91. 91.
    Barhanin J, Giglio JR, Leopold P, Schmid A, Sampaio SV, Lazdunski M: Tityus serrulatus venom contains two classes of toxins: Tityus y toxin is a new tool with a very high affinity for studying the Na+ channel. J Biol Chem 257: 12553–12558, 1982.PubMedGoogle Scholar
  92. 92.
    Sperelakis N, Shigenobu K, McLean MJ: Membrane cation channels: changes in developing hearts, in cell culture and in organ culture. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. New York: Raven, 1975, pp 209–234.Google Scholar
  93. 93.
    Bernard C: Establishment of ionic permeabilities of the myocardial membrane during embryonic development of the rat. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. New York: Raven, 1975, pp 169184.Google Scholar
  94. 94.
    Frelin C, Lombet A, Vigne P, Romey G, Lazdunski M: Properties of Na+ channels in fibroblasts. Biochem Biophys Res Commun 107: 202–208, 1982.PubMedCrossRefGoogle Scholar
  95. 95.
    Knox JR, Slobbe J: Three novel alkaloids from Ervatamina orientales. Tetrahedron Lett A: 2149–2151, 1971.Google Scholar
  96. 96.
    Frelin C, Vigne P, Ponzio G, Romey G, Tourneur Y, Husson HP, Lazdunski M: The interaction of ervatamine and epiervatamine with the action potential Na+ ionophore. Mol Pharmacol 20: 107112, 1981.Google Scholar
  97. 97.
    Pichon Y, Sauviat MP: Effect of ervatamine on the sodium current in squid giant axons. J Physiol (Lond) 280: 29–30P, 1978.Google Scholar
  98. 98.
    Sauviat MP: Effects of ervatamine chlorhydrate on cardiac membrane currents in frog atrial fibres. Br J Pharmacol 71: 41–49, 1980.PubMedGoogle Scholar
  99. 99.
    Lee CY: Recent advances in chemistry and pharmacology of snake toxins. In: Ceccarelli B, Clementi F (eds) Advances in cytopharmacology, vol 3. New York: Raven, 1979, pp 1–16.Google Scholar
  100. 100.
    Vincent JP, Schweitz H, Chicheportiche R, Fosset M, Balerna M, Lenoir MC, Lazdunski M: Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry 15: 3171–3175, 1976.PubMedCrossRefGoogle Scholar
  101. 101.
    Vincent JP, Balerna M, Lazdunski M: Properties of association of cardiotoxin with lipid vesicles and natural membranes: a fluorescence study. FEBS Lett 85: 103–108, 1978.PubMedCrossRefGoogle Scholar
  102. 102.
    Gulik-Krzywichi T, Balerna M, Vincent JP, Lazdunski M: Freeze-fracture study of cardiotoxin action on axonal membrane and axonal membrane lipid vesicles. Biochim Biophys Acta 643: 101–114, 1981.CrossRefGoogle Scholar
  103. 103.
    Moore RE, Scheuer PJ: Palytoxin: a new marine toxin from Coelentarate. Science 172: 495–498, 1971.PubMedCrossRefGoogle Scholar
  104. 104.
    Rayner MD, Sanders BJ, Harris SM, Lin YC, Morton BE: Palytoxin: effects on contractility and 4SCa2+ uptake in isolated ventricle strips. Res Commun Chem Pathol Pharmacol 11: 55–65, 1975.PubMedGoogle Scholar
  105. 105.
    Narahashi T: Effects of insecticides on nervous conduction and synaptic transmission. In: Wilkinson CF (ed) Insecticide biochemistry and physiology. New York: Plenum, 1976, pp 327–352.Google Scholar
  106. 106.
    Jacques Y, Romey G, Cavey MT, Kartalovski B, Lazdunski M: Interaction of pyrethroids with the Na+ channel in mammalian neuronal cells in culture. Biochim Biophys Acta 600: 882–897, 1980.PubMedCrossRefGoogle Scholar
  107. 107.
    Sperelakis N: Effects of cardiotoxic agents on the electrical properties of myocardial cells. In: Balazs T (ed) Cardiac toxicology, vol 1. Boca Raton FL: CRC, 1981, pp 39–108.Google Scholar
  108. 108.
    Ehlert FJ, Ito ja E, Roeske WR, Yamamura HI: The interaction of [3H}nitredipine with receptors for calcium antagonists in the cerbral cortex and heart of rats. Biochem Biophys Res Commun 104: 937–943, 1982.PubMedCrossRefGoogle Scholar
  109. 109.
    Bolger GT, Gengo PJ, Luchowski EM, Siegel H, Triggle DJ, Janis RA: High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochem Biophys Res Commun 104: 1604–1609, 1982.PubMedCrossRefGoogle Scholar
  110. 110.
    Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M: Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 79: 1308–1312, 1982.PubMedCrossRefGoogle Scholar
  111. 111.
    Meech RW: Calcium-dependent potassium activation in nervous tissue. Annu Rev Biophys Bioeng 7: 1–18, 1978.PubMedCrossRefGoogle Scholar
  112. 112.
    Barrett JN, Barrett EF, Dribin LB: Calcium-dependent slow potassium conductance in rat skeletal myotubes. Dev Biol 82: 258–266, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1984

Authors and Affiliations

  • M. Lazdunski
  • J. F. Renaud

There are no affiliations available

Personalised recommendations