Advertisement

Nutrition and Childhood Neuropsychological Disorders

  • Michael L. Lester
  • Diana H. Fishbein
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

Nutrition is the relationship of foods to health. Adequate nutrition is essential for normal organ development and functioning; for normal reproduction, growth, and maintenance; for optimum activity level and working efficiency; for resistance to infection and disease; and for the ability to repair bodily damage or injury (Kirschmann, 1981). Malnutrition, on the other hand, is not solely undernutrition but includes all forms of nutritional deficits; it exists whenever inadequate amounts of essential nutrients are supplied to tissues and organ systems. From infancy to maturity, the brain and body experience tremendous growth and development. Heredity and environment jointly affect the development and functional effectivities of organ systems that, in total, determine each child’s developmental potential. However, too seldom considered within this scheme is the fact that nutrition is of primary importance for the expression of psychological as well as physical capabilities.

Keywords

Zinc Deficiency Mossy Fiber Continuous Glucose Monitoring Plasma Zinc Hyperactive Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, H. C., Davis, J. M., and Himwich, W. A. (1966). Postnatal changes in free amino acid pool of rat brain. Journal of Neurochemistry, 13, 607.PubMedCrossRefGoogle Scholar
  2. Alonso, R., Agharanya, J., and Wurtman, R. J. (1978). Effects of carbidopa or precursor (tyrosine) loading on urinary catecholamine levels in rats. Abstract presented at the Society for Neuroscience.Google Scholar
  3. Alvarez, W. C. (1946). Puzzling “nervous storms” due to food allergy. Gastroenterology, 7, 241.PubMedGoogle Scholar
  4. Augustine, G., and Levitan, H. (1980). Neurotransmitter release from vertebrate neuromuscular synapse affected by a food dye. Science, 207, 1489–1490.PubMedCrossRefGoogle Scholar
  5. Barchas, J. D., Akil, H., Elliott, G. R., Holman, R. B., and Watson, S. J. (1978). Behavioral neurochemistry: Neuroregulators and behavioral states. Science, 200, 964–973.PubMedCrossRefGoogle Scholar
  6. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–417.PubMedCrossRefGoogle Scholar
  7. Bellak, P. (1978). Disorders of the schizophrenic syndrome (pp. 45–135 ). New York: Basic Books.Google Scholar
  8. Booyens, J., Luitingh, M. L., and Van Rensburg, C. F. (1977). The relationship between scholastic progress and nutritional status. Part II. A one-year follow-up study. South African Medical Journal, 52, 650–652.Google Scholar
  9. Bremner, I., and Campbell, J. K. (1980). The influence of dietary copper intake on the toxicity of cadmium. In O. A. Levander and L. Cheng (Eds.), Micronutrient interactions: Vitamins, minerals and hazardous elements (Vol. 355, pp. 319–331 ). New York: Annals of New York Academy of Sciences.Google Scholar
  10. Brewster, L., and Jacobson, M. (1983). The changing American diet: A chronicle of American eating habits from 1910–1980. Washington, DC: Center for Science in the Public Interest.Google Scholar
  11. Brin, M. (1976). Nutrient intervention to improve nutritional status. In A. M. Altschul (Ed.), New protein foods, Vol. 2, Technology, (Part B, pp. 222–238 ). New York: Academic Press.Google Scholar
  12. Buckley, R. E. (1972). A neurophysiologic proposal for the amphetamine response in hyperkinetic children. Psychosomatics, 13, 93.PubMedGoogle Scholar
  13. Buell, G. (1975). Some biological aspects of cadmium toxicology. Journal of Occupational Medicine, 17, 193.Google Scholar
  14. Burger, P. C., and Vogel, F. S. (1973). The development of pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. American Journal of Pathology, 73, 157–476.Google Scholar
  15. Butrimovitz, G. P., and Purdy, W. C. (1978). Zinc nutrition and growth in a childhood population. American Journal of Clinical Nutrition, 31, 1409–1412.PubMedGoogle Scholar
  16. Cantor, D. S., Thatcher, R. W., Ozand, P., Kumin, L., and Rothschild, J. (1986). A report on phosphatidylcholine therapy in a Down’s syndrome child. Psychological Reports, 58, 207–217.PubMedCrossRefGoogle Scholar
  17. Carlsson, A., and Lindquist, M. (1963). Effect of chorpromazine and haloperidol on formation of 3methantyramine and norepenephrine in mouse brain. Acta Pharmacologica Toxicologica, 20, 140–144.CrossRefGoogle Scholar
  18. Cavioto, J., and Arrieta, R. (1983). Malnutrition in childhood. In M. Rutter (Ed.), Developmental neuropsychiatry (pp. 32–51 ). New York: Guilford.Google Scholar
  19. Cerklewski, F. L., and Forbes, R. M. (1976). Influence of dietary zinc on lead toxicity in the rat. Journal of Nutrition, 106, 689–696.PubMedGoogle Scholar
  20. Chalew, S., McLaughlin, J., Mersey, J., Adams, A. J., Cornblath, M., and Kowarski, A. (1984). The use of the plasma epinephrine response in the diagnosis of idiopathic postprandial syndrome. Journal of the American Medical Association, 251, 612–615.PubMedCrossRefGoogle Scholar
  21. Cheftel, H., Cotta-Ramusino, F., Egan, H., Kojima, K., Mietinen, J. K., Smith, D. M., Bergland, F., Blumenthal, H., Goldberg, L., Kazantzis, G., Piscator, M., Truhaut, R., Tsaubaki, T., and Najcev, A. N. (1972). Evaluation of certain food additives and the contaminants mercury, lead, and cadmium. World Health Organization Technical Report Series, 505, 20–24.Google Scholar
  22. Chiel, H. J., and Wurtman, R. J. (1981). Short term variations in diet composition change the pattern of spontaneous motor activity in rats. Science, 213, 676–677.PubMedCrossRefGoogle Scholar
  23. Citizens’ Commission on Hunger in New England. (1984). American hunger crisis: Poverty and health in New England. Boston: Harvard School of Public Health.Google Scholar
  24. Cohen, E. L., and Wurtman, R. J. (1975). Brain acetylcholine: Increase after systemic choline administration. Life Sciences, 16, 1095–1102.PubMedCrossRefGoogle Scholar
  25. Cohen, E. L., and Wurtman, R. J. (1979). Nutrition and brain neurotransmitters. In M. Winick (Ed.), Human nutrition: Pre and postnatal development (Vol. 1, pp. 103–132 ). New York: Plenum Press.Google Scholar
  26. Connors, C. K., Goyette, C. H., and Southwick, D. A., Lees, and Andrulonis (1976). Food additives and hyperkinesis: A controlled double-blind experiment. Pediatrics, 58, 154–166.Google Scholar
  27. Connor, W. E. (1979). Too Little or too much: The case for preventive nutrition. The American Journal of Clinical Nutrition, 32, 1975–1978.Google Scholar
  28. Coppen, A. (1967). The biochemistry of affective disorders. British Journal of Psychiatry, 113, 1237–1264.PubMedCrossRefGoogle Scholar
  29. Coyle, J. T., and Axelrod, J. (1971). Development of the uptake and storage of L-(3-H)norepinephrine in the rat brain. Journal of Neurochemistry, 18, 20–61.CrossRefGoogle Scholar
  30. Crapo, P. A., Reaven, G., and Olefsky, J. (1976). Plasma glucose and insulin responses to orally administered simple and complex carbohydrates. Daibetes, 25, 741–747.CrossRefGoogle Scholar
  31. Crawford, I. L. (1983). Zinc and the hippocampus: Histology, nerochemistry, pharmacology, and putative functional relevance. In I. E. Dreosti and R. M. Smith (Eds.), Neurobiology of the trace Elements. Vol. 1, Trace element neurobiology and deficiencies (pp. 163–211 ). Clifton, NJ: Humana Press.CrossRefGoogle Scholar
  32. Crawford, I. L., and Connor, J. D. (1971). Zinc distribution in developing rat brain. Pharmacologist, 13, 275.Google Scholar
  33. Crook, W. G. (1975). Can your child read? Is he hyperactive? Jackson, TN: Pedicenter Press.Google Scholar
  34. Crook, W. G. (1980). Can what a child eats make him dull, stupid or hyperactive? Journal of Learning Disabilities, 13, 281–286.PubMedGoogle Scholar
  35. Cryer, P. E. (1981). Glucose counterregulation in man. Diabetes, 30, 261–264.PubMedGoogle Scholar
  36. Dasen, P. R., Lavallee, M., and Retschitzki, J. (1977). Early moderate malnutrition and the development of sensorimotor intelligence. Environmental Child Health, 1, 146–145.Google Scholar
  37. Davis, K. L., Mohs, R. C., and Trinklenberg, J. R. (1979). Enhancement of memory by physotigmine. New England Journal of Medicine, 301, 94.Google Scholar
  38. De Licardie, E. R., and Cravioto, J. (1974). Behavioral responsiveness of survivors of clinical severe malnutrition to cognitive demands. In J. Cravioto, L. Hambraeus, and B. Valhquist (Eds.), Early Malnutrition and Mental Development. Uppsala: Almquist and Wilsells.Google Scholar
  39. Deutsch, E., Sohmer, H., Weidenfeld, J., Zelig, S., and Chowers, I. (1983). Auditory nerve-brainstem evoked potentials and EEG during severe hypoglycemia. Electroencephalography and Clinical Neurophysiology, 55, 714–716.PubMedCrossRefGoogle Scholar
  40. Dobbing, J. (1976). Vulnerable period in brain growth and somatic growth. In D. F. Roberts and A. M. Thomson (Eds.), The biology of human fetal growth, London: Taylor and Francis.Google Scholar
  41. Dodge, P. R., Prensky, A. L., and Feigin, R. D. (1975). Nutrition and the developing nervous system. St. Louis: C. V. Mosby.Google Scholar
  42. Dohan, F. C. (1978). Schizophrenia: Are some food-derived polypeptides pathogenic? In G. Hemmings and W. A. Hemmings (Eds.), The biological basis of schizophrenia (pp. 167–178 ). Lancaster: MTP Press Limited.CrossRefGoogle Scholar
  43. Drash, A. L., Becker, D. J., Kenien, A. G., and Steranchak, L. (1981). Nutritional considerations in the treatment of the child with diabetes mellitus. In R. M. Suskind (Ed.), Textbook of pediatric nutrition (pp. 449–457 ). New York: Raven Press.Google Scholar
  44. Duggan, R. E., and Corneliussen, P. E. (1972). Dietary intake of pesticide chemicals in the United States (III), June 1968-April 1970. Pesticide Monitoring Journal, 5, 331–341.Google Scholar
  45. Egger, J., Carter, C. M., Graham, P. J., Gumley, D., and Soothill, J. F. (1985). Controlled trial of oligoantigenic treatment in the hyperkinetic syndrome. Lancet, 14, 540–545.CrossRefGoogle Scholar
  46. Ellis, W. G., McCullough, J. R., and Corley, C. L. (1974). Presenile dementia in Down’s syndrome: Ultrastructural identity with Alzheimer’s disease. Neurology, 24, 101–106.PubMedCrossRefGoogle Scholar
  47. Engel, G. L., and Margolin, S. G. (1941). Clinical correlation of the EEG with carbohydrate metaboism. Archives of Neurological Psychiatry, 45, 890.Google Scholar
  48. Ershoff, B. H. (1976). Synergistic toxicity of food additives in rats fed a diet low in dietary fiber. Journal of Food Science, 41, 949–951.Google Scholar
  49. Feingold, B. F. (1975). Why your child is hyperactive? Westminster, MD: Random House.Google Scholar
  50. Feingold, B. F. (1976). Hyperkinesis and learning disabilities linked to the ingestion of artificial food colors and flavors. Journal of Learning Disabilities, 9, 551–569.CrossRefGoogle Scholar
  51. Feingold, B. F. (1980). Hyperkinesis and learning difficulties. In: Nutrition and mental health. Hearing before the Select Committee on Nutrition and Human Needs of the United States Senate, 95th Congress. June, 1980 Update (pp. 80–90 ). Washington, DC: U.S. Government Printing Office.Google Scholar
  52. Feise, G., Kogure, K., Busto, R., Scheinberg, P., and Reinmuth, O. M. (1976). Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat. Brain Research, 126, 263.CrossRefGoogle Scholar
  53. Fernstrom, J. D., and Wurtman, R. J. (1971). Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science, 173, 149–152.PubMedCrossRefGoogle Scholar
  54. Ferrendelli, J. A., and Chang, M. M. (1973). Brain metabolism during hypoglycemia. Archives of Neurology, 28, 173–177.PubMedCrossRefGoogle Scholar
  55. Fishbein, D. H. (1982). The contribution of refined carbohydrate consumption to maladaptive behavior. Journal of Orthomolecular Psychiatry, 11, 1.Google Scholar
  56. Food and Nutrition Board. (1974). Recommended dietary allowances ( 8th ed. ). Washington, DC: National Academy of Sciences National Resource Council.Google Scholar
  57. Fox, M. R. (1974). Effect of essential minerals on cadmium toxicity: A Review. Journal of Food Science, 37, 321–324.CrossRefGoogle Scholar
  58. Fox, M. R. (1976). Cadmium metabolism-A review of aspects pertinent to evaluating dietary cadmium intake by man. In A. S. Prasad (Ed.), Trace elements in human health and disease, Vol. II, Essential and toxic elements (pp. 401–416 ). New York: Academic Press.Google Scholar
  59. Friberg, L., Piscator, M., and Nordberg, G. F. (1971). Cadmium in the environment. Cleveland: Chemical Rubber Company Press.Google Scholar
  60. Friedman, G. J. (1980). Diet in treatment of diabetes mellitus. In R. S. Goodhart and M. E. Shils (Eds.), Modern nutrition in health and disease ( 6th ed., pp. 977–997 ). Philadelphia: Lea and Febiger.Google Scholar
  61. Gaulin, S. J. C., and Konner, M. (1977). On the natural diet of primates, including humans. In R. J. Wurtman and J. J. Wurtman (Eds.), Nutrition and the brain, Vol. 1, Determinants of the availability of nutrients to the brain (pp. 2–69 ). New York: Raven Press.Google Scholar
  62. Gelenberg, A. J., Gibson, C. J., and Wojcik, J. D. (1982). Neurotransmitter precursors for the treatment of depression. Psychopharmocology Bulletin, 18, 7–18.Google Scholar
  63. Ghose, K., and Carroll, J. D. (1984). Mechanism of tyramine-induced migraine: Similarity with dopamine and interactions with disulfiram and propranolol in migraine patients. Neuropsychobiology, 12, 122–126.PubMedCrossRefGoogle Scholar
  64. Gibson, C. J., and Wurtman, R. J. (1977). Physiological control of brain catecholamine synthesis by brain tyrosine concentration. Biochemical Parmacology, 26, 1137–1142.CrossRefGoogle Scholar
  65. Gibson, C. J., and Wurtman, R. J. (1978). Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sciences, 22, 1399–1406.PubMedCrossRefGoogle Scholar
  66. Gilmour, D. G., Manowitz, P., Frosch, W. A., and Shopson, B. (1973). Association of plasma tryptophan levels with clinical change in female schizophrenic patients. Biological Psychiatry, 6, 119–128.PubMedGoogle Scholar
  67. Gjedde, A., and Crone, C. (1981). Blood brain glucose transfer: Repression in chronic hyperglycemia. Science, 214, 456–457.PubMedCrossRefGoogle Scholar
  68. Green, A. R. (1978). The effects of dietary tryptophan and its peripheral metabolism on brain 5hydroxytryptamine synthesis and funcfion. Essays in Neurochemistry and Neuropharmachology (Vol. 3 ). Chichester: Wiley.Google Scholar
  69. Green, A. R., and Costain, D. W. (1979). The biochemistry of depression. In E. S. Paykel and A. Coppen (Eds.), Psychopharmacology of affective disorders. Oxford: Oxford University Press.Google Scholar
  70. Green, A. R., and Costain, D. W. (1981). Pharmacology and biochemistry of psychiatric disorders. Toronto: Wiley.Google Scholar
  71. Green, J. D. (1964). The hippocampus. Physiological Review, 44, 561–607.Google Scholar
  72. Greenwood, M. H., Lader, M. H., Kantameni, B. D., and Curzon, G. (1975). The acute effects of oral L-tryptophan in human subjects. British Journal of Clinical Psychiatry, 2, 145–172.Google Scholar
  73. Gross, S. B., Yeager, D. W., and Middendorf, M. S. (1976). Cadmium in liver, kidney and hair of humans, fetal through old age. Journal of Toxicology and Environmental Health, 2, 153–167.PubMedCrossRefGoogle Scholar
  74. Growden, J. H. (1979). Neurotransmitters in the diet: Their use in the treatment of brain diseases. In R. J. Wurtman and J. J. Wurtman (Eds.), Nutrition and the brain, Vol. 3, Disorders of eating, and nutrients in treatment of brain Diseases (pp. 117–181 ). New York: Raven Press.Google Scholar
  75. Growden, J. H., Hirsch, M. J., Wurtman, R. J., and Weiner, W. (1977). Oral choline administration to patients with tardive dyskinesia. New England Journal of Medicine, 297, 524–527.CrossRefGoogle Scholar
  76. Hambidge, M. K. (1982). Hair analysis: Worthless for vitamins, limited for minerals. The American Journal of Clinical Nutrition, 36, 943–949.PubMedGoogle Scholar
  77. Hambidge, M. K., Hambidge, C., Jacobs, M., and Baum, J. D. (1972). Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatric Research, 6, 868–874.PubMedCrossRefGoogle Scholar
  78. Hambidge, M. K., Walravens, P. A., Brown, R. M., Webster, J., White, S., Anthony, M., and Roth, M. (1976). The American Journal of Clinical Nutrition, 29, 734–738.PubMedGoogle Scholar
  79. Hartmann, E. (1977). L-tryptophan: A rational hypnotic with clinical potential. American Journal of Psychiatry, 134, 366–370.PubMedGoogle Scholar
  80. Haubrich, H. G., Wang, P. F. L., Clody, D. E., and Wedeking, P. W. (1975). Increase in rat brain acetylcholine induced by choline or deanol. Life Sciences, 17, 975–980.PubMedCrossRefGoogle Scholar
  81. Haug, F. M. S. (1967). Electron microscopical localization of zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemistry, 8, 355–368.PubMedCrossRefGoogle Scholar
  82. Haug, F. M. S., Blackstad, T. W., Zimmer, J., and Simonsen, A. H. (1971). Timm’s sulfide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. Journal of Comparative Neurology, 142, 23–32.PubMedCrossRefGoogle Scholar
  83. Henkin, R. I., Patten, B. M., Re, P. K., and Bronzert, D. A. (1975). A syndrome of acute zinc loss. Archives of Neurology, 32, 745–751.PubMedCrossRefGoogle Scholar
  84. Hesse, G. W. (1979). Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers. Science, 205, 1005–1007.PubMedCrossRefGoogle Scholar
  85. Hesse, G. W., Hesse, K. A., and Catalanotto, F. A. (1979). Behavioral characteristics of rats experiencing chronic zinc deficiency. Physiology and Behavior, 22, 211–215.PubMedCrossRefGoogle Scholar
  86. Hoagland, H., Rubin, M. A., and Cameron, D. E. (1937). The EEG of schizophrenics during insulin hypoglycemia recovery. American Journal of Physiology, 120, 59.Google Scholar
  87. Hofeldt, F. D., Lufkin, E. G., and Hagler, L. (1974). Are abnormalities in insulin secretion responsible for reactive hypoglycemia? Diabetes, 23, 589–596.PubMedGoogle Scholar
  88. Holden, J. M., Wolf, W. R., and Mertz, W. (1979). Zinc and copper in self-selected diets. Journal of the American Dietetic Association, 75, 23–28.PubMedGoogle Scholar
  89. Hornykiewicz, O. (1973). Psychopharmacological implications of dopamine and dopamine antagonists: A critical evaluation of current evidence. Neuroscience, 3, 773–783.CrossRefGoogle Scholar
  90. Hosobuchi, V., Lamb, S., and Bascomb, D. (1980). Tryptophan loading may reverse tolerance to opiate analgesics in humans: A preliminary report. Pain, 9, 161–169.PubMedCrossRefGoogle Scholar
  91. Hudspeth, W. J., Peterson, L. W., Soli, D. E., and Trimble, B. A. (1981). Neurobiology of the hypoglycemia syndrome. Journal of Holistic Medicine, 3, 60–71.Google Scholar
  92. Jastak, J. F., and Jastak, S. (1978). Wide Range Achievement Test Manual. Wilmington, DE: Jastak Association Incorporated.Google Scholar
  93. John, E. R., Ahn, H., Prichep, L., Trepetin, M., and Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210, 1255–1258.PubMedCrossRefGoogle Scholar
  94. Johnson, L. C., and Chernik, D. A. (1982). Sedative-hypnotics and human performance. Psycho-pharmacology, 76, 101–113.CrossRefGoogle Scholar
  95. Johnson, D. D., Dorr, K. E., Swenson, W. M., and Service, J. (1980). Reactive hypoglycemia. Journal of the American Medical Association, 243, 11.CrossRefGoogle Scholar
  96. Jones, H. S., and Fowler, B. A. (1980). Biological interactions of cadmium with calcium. In O. A. Levander and L. Cheng (Eds.), Micronutrient interactions: Vitamins, minerals and hazardous elements, (Vol. 355, pp. 309–317 ). New York: Annals of the New York Academy of Sciences.Google Scholar
  97. Joseph, M. H., Baker, H. F., Crow, T. J., Riley, G. J., and Risby, D. (1979). Brain tryptophan metabolism in schizophrenia: A post mortem study of metabolites on the serotonin and kynurenine pathways in schizophrenics and control subjects. Psychopharmacology, 62, 279.CrossRefGoogle Scholar
  98. Karmel, B. Z., Kaye, H., and John, E. R. (1978). Developmental neurometrics: The use of quantitative analysis of brain electrical activity to probe mental function throughout the life-span. In A. Collins (Ed.), Minnesota Symposium on Child Psychology (pp. 141–198 ). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  99. Kennedy, C., and Sokoloff, L. (1957). An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: Normal values for cerebral blood flow and cerebral metabolic rate in childhood. Journal of Clinical Investigation, 36, 1130–1137.PubMedCrossRefGoogle Scholar
  100. Kimura, M. (1981). Effects of cadmium on growth and bone metabolism. In J. O. Nriagu (Ed.), Cadmium in the environment, Part II. Health effects (pp. 757–781 ). New York: Wiley.Google Scholar
  101. Kirschmann, J. D. (1981). Nutrition almanac. New York: McGraw-Hill.Google Scholar
  102. Kline, N. S., and Shah, B. K. (1973). Comparable therapeutic efficacy of tryptophan and imipramine: Average therapeutic ratings versus “true equivalence.” An important difference. Current Therapy Research, 15, 484–487.Google Scholar
  103. Knittle, J. L., Merritt, R. J., Dixon-Shanies, D., Ginsberg-Fellner, Timmers, K. I., and Katz, D. P. (1981). Childhood obesity. In R. M. Suskind, (Ed.), Textbook of pediatric nutrition (pp. 415–434 ). New York: Raven.Google Scholar
  104. Knopf, C. F., Cresto, J. C., Dujovne, I. L., Ramos, O., and de Majo, S. F. (1977). Oral glucose tolerance test in 100 normal children. Acta Diabetologica Latina, 14, 95–103.PubMedCrossRefGoogle Scholar
  105. Kronick, D. A. (1975). A case history: Sugar, fried oysters, and zinc. Academic Therapy, 11, 119.Google Scholar
  106. Langseth, L., and Dowd, J. (1978). Glucose tolerance and hyperkinesis. Food, Cosmetics and Toxicology, 16, 129–133.CrossRefGoogle Scholar
  107. Lehmann, J. (1971). Levodopa and depression in Parkinsonism. Lancet, 1, 140.PubMedCrossRefGoogle Scholar
  108. Lehmann, J. (1973). Tryptophan nonabsorption in levodopa-treated Parkinsonian patients. Effect of tryptophan on mental disturbances. Acta Medico Scandinavica, 194, 181–189.CrossRefGoogle Scholar
  109. Lester, M. L., Thatcher, R. W., and Monroe-Lord, L. (1982). Refined carbohydrate intake, hair cadmium levels and cognitive functioning in children. Nutrition and Behavior, 1, 1–14.Google Scholar
  110. Lester, M. L., Horst, R., and Thatcher, R. W. (1987). Protective effects of calcium and zinc against heavy metal impairment of cognitive function. Nutrition and Behavior, 3, 145–161.Google Scholar
  111. Levine, S., and Wiener, S. (1976). A critical analysis of data on malnutrition and behavioral deficits. Advances in Pediatrics, 22, 113–136.PubMedGoogle Scholar
  112. Lhermitte, F., Peterfalvi, M., Marteau, R., Gazengel, J. V., and Serdaru, M. (1971). Pharmacological analysis of a case of postanoxic intention and action myoclonus. Review of Neurology, 124, 21–31.Google Scholar
  113. Li, P. K., and Vallee, B. L. (1980). The biochemical and nutritional roles of other trace elements. In R. S. Goodhart and M. E. Shils (Eds.), Modern nutrition in health and disease ( 6th ed.; pp. 408–441 ). Philadelphia: Lea and Febiger.Google Scholar
  114. Lieberman, H. R., Corkin, S., Spring, B. J., Growden, J. H., and Wurtman, R. J. (1987). Effects of food constituents on human mood and performance. In H. R. Lieberman, and R. J. Wurtman (Eds.), Research Strategies for Assessing the Behavioral Effects of Foods and Nutrients (pp. 69–93 ). New York: Pergamon.Google Scholar
  115. Lipton, L. A., and Wender, E. H. (1984). Statement of the resource conference on diet and behavior. Nutrition Review, 42, 200–201.Google Scholar
  116. Lipton, M. A., Nemeroff, C. B., and Mailman, R. B. (1979). Hyperkinesis and food additives. In R. J. Wurtman and J. J. Wurtman (Eds.), Nutrition and the brain, Vol. 4, Toxic effects of food Constituents on the brain (pp. 1–27 ). New York: Raven.Google Scholar
  117. Lackey, S. D. (1972). Sensitizing properties of food additives and other commercial products. Annals of Allergy, 30, 638–641.Google Scholar
  118. Lockey, S. D. (1976). Sensitivity to FD and C dyes in drugs, foods and beverages. In L. D. Dickey (Ed.), Clinical ecology. Springfield, IL: Charles C Thomas.Google Scholar
  119. Maclaren, N. K. (1981). Nutritional considerations in the etiology and treatment of hypoglycemia. In M. Suskind, (Ed.), Textbook of pediatric nutrition, (pp. 459–464 ). New York: Raven Press.Google Scholar
  120. McCaman, R. E., and Aprison, M. H. (1964). The synthetic and catabolic enzyme systems for acetylcholine and serotonin in several discrete areas of the developing rabbit brain. Progress in Brain Research, 9, 220.CrossRefGoogle Scholar
  121. McKay, H., Sinisterra, L. McKay, A., Gomez, H., and Lloreda, P. (1978). Improving cognitive ability in chronically deprived children. Science, 200, 270–278.PubMedCrossRefGoogle Scholar
  122. Mahaffey, K. R. (1981). Nutritional factors in lead poisoning. Nutrition Reviews, 39, 353–362.CrossRefGoogle Scholar
  123. Manowitz, P., Gilmour, D. G., and Racevskis, J. (1973). Low plasma tryptophan levels in recently hospitalized schizophrenics. Biological Psychiatry, 6, 102–118.Google Scholar
  124. Marin-Padilla, M. (1976). Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome: A Golgi study. Journal of Comparative Neurology, 167, 63–82.PubMedCrossRefGoogle Scholar
  125. Marks, V., and Rose, F. C. (1981). Hypoglycaemia (2nd ed., pp. 464–473 ). Oxford: Blackwell Scientific Publications.Google Scholar
  126. Marsh, D. C., Flynn, D. D., and Potter, L. T. (1985). Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science, 228, 1115–1117.CrossRefGoogle Scholar
  127. Mefford, I. N., Baker, T. L., Boehme, R., Foutes, A. S., Ciaranello, R. D., Barchas, J. D., and Dement, N. C. (1983). Narcolepsy: Biogenic amine deficits in an animal model. Science, 220, 629–632.PubMedCrossRefGoogle Scholar
  128. Merali, Z., and Singhal, R. L. (1981). Biochemistry of cadmium in mammalian systems: Pancreotoxic and hepatotoxic manifestations. In J. O. Nriagu (Ed.), Cadmium in the environment, Part II, Health effects (pp. 617–637 ). New York: Wiley.Google Scholar
  129. Messing, R. B., and Lytle, L. D. (1977). Serotonin-containing neurons: Their possible role in pain and analgesia. Pain, 4, 1–21.PubMedCrossRefGoogle Scholar
  130. Mizuno, T. I., and Yugari, Y. (1974). Self mutilation in the Lesch-Nyhan syndrome. Lancet, 1, 761.PubMedCrossRefGoogle Scholar
  131. Moja, E. A., Mendelson, W. B., Stoff, D. M., Gillin, J. C., and Wyatt, R. J. (1979). Reduction of REM sleep by a tryptophan-free amino acid diet. Life Sciences, 24, 1467–1470.PubMedCrossRefGoogle Scholar
  132. Moller, S. E., Kirk, L., and Fremming, K. H. (1976). Plasma amino acids as an index for subgroups in manic depressive psychosis: Correlation to effect of tryptophan. Psychopharmacology, 49, 205–213.PubMedCrossRefGoogle Scholar
  133. Monckeberg, F. (1968). Mental retardation from malnutrition: “Irreversible.” Journal of the American Medical Association, 201, 30–31.Google Scholar
  134. Moynahan, E. J. (1976). Zinc deficiency and disturbances of mood and visual behaviors. Lancet, 1, 91.PubMedCrossRefGoogle Scholar
  135. Muscettola, G., Wehr, T., and Goodwin, F. K. (1977). Effect of diet on urinary MHPG excretion in depressed patients and normal control subjects. American Journal of Psychiatry, 134, 914–916.PubMedGoogle Scholar
  136. Neathery, M. W. (1981). Metabolism and toxicity of cadmium in animals. In J. O. Nriagu (Ed.), Cadmium in the environment, Part II, Health effects (pp. 553–581 ). New York: Wiley.Google Scholar
  137. Nordberg, G. F., and Nishiyama, K. (1972). Whole body and hair retention of cadmium in mice. Archives of Environmental Health, 24, 209–214.PubMedGoogle Scholar
  138. Nriagu, J. O. (1981). Production, uses, and properties of cadmium. In J. O. Nriagu (Ed.), Cadmium in the environment, Part II, Health effects (pp. 36–39 ). New York: Wiley.Google Scholar
  139. Nyhan, W. L. (1976). Behavior in the Lesch-Nyhan syndrome. Journal of Autism and Child Schizophrenia, 6, 235–252.CrossRefGoogle Scholar
  140. Oleru, G. (1976). Kidney, liver, hair and lungs as indicators of cadmium absorption. American Industrial Hygiene Association Journal, 37, 617–621.PubMedCrossRefGoogle Scholar
  141. Olson, R. E. (1978). Clinical nutrition: An interface between human ecology and internal medicine. Nutrition Reviews, 36, 161–178.PubMedCrossRefGoogle Scholar
  142. Pennington, J. A. T., and Church, H. N. (1980). Bowes and Church’s food Values of portions commonly used ( 13th ed. ). New York: Harper and Row.Google Scholar
  143. Perry, E. K., and Perry, R. H. (1980). The cholinergic system in Alzheimer’s disease. In P. J. Roberts (Ed.), Biochemistry of dementia. Chichester: Wiley.Google Scholar
  144. Petering, H. G. (1978). Some observation on the interaction of zinc, copper and iron metabolism in lead and cadmium toxicity. Environmental Health Perspectives, 25, 141–145.PubMedCrossRefGoogle Scholar
  145. Peters, B. H., and Levine, H. S. (1977). Memory enhancement after physostigmine in the amnesic syndrome. Archives of Neurology, 34, 215–219.PubMedCrossRefGoogle Scholar
  146. Phelps, M. E., and Mazziotta, J. C. (1985). Positron emission tomography: Human brain function and biochemistry. Science, 228, 799–809.PubMedCrossRefGoogle Scholar
  147. Philpott, W. (1977). Ecologic and biochemical observations in the schizophrenic syndrome. Journal of Orthomolecular Psychiatry, 6, 277–282.Google Scholar
  148. Pihl, R. O., and Parkes, M. (1977). Hair element content in learning disabled children. Science, 198, 204–206.PubMedCrossRefGoogle Scholar
  149. Pijnenburg, A. J. J., Honig, W. M. M., and Van Der Heyden, J. A. M. (1976). Effects of chemical stimulating of the mesolimbic dopamine system upon locomotor activity. European Journal of Pharmacology, 35, 45–58.PubMedCrossRefGoogle Scholar
  150. Platt, B. S., Pampiglione, G., and Stewart, R. J. C. (1965). Experimental protein-calorie deficiency: Clinical, electroencephalographic, and neuropathological changes in pigs. Developmental Medicine and Child Neurology, 7, 9–26.Google Scholar
  151. Pollin, W., Cardon, P. V., and Kety, S. S. (1961). Effects of amino acid feedings in schizophrenic patients treated with Iproniazid. Science, 133, 104–105.PubMedCrossRefGoogle Scholar
  152. Powell, G. W., Miller, W. J., Morton, J. D., and Clifton, C. M. (1964). Influence of dietary cadmium level and supplemental zinc and cadmium toxicity in the bovine. Journal of Nutrition, 84, 205–214.PubMedGoogle Scholar
  153. Powers, H. W. S. (1974). Dietary measures to improve behavior and achievement. Academic Therapy, 9, 203–214.Google Scholar
  154. Powers, H., and Presley, J. (1978). Nutrition and your child’s behavior. New York: St. Martin’s Press.Google Scholar
  155. Pribram, K. H., and McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82, 116–149.PubMedCrossRefGoogle Scholar
  156. Price, J. M., Brown, R. R., and Peters, H. A. (1959). Tryptophan metabolism in porphyria schizophrenia and a variety of neurologic and psychiatric diseases. Neurology, 9, 456–468.PubMedCrossRefGoogle Scholar
  157. Prinz, R. J., Roberts, W. A., and Hantman, E. (1980). Dietary correlates of hyperactive behavior in children. Journal of Consulting and Clinical Psychology, 48, 760–769.PubMedCrossRefGoogle Scholar
  158. Purpura, D. P. (1977). Dendritic differential in human cerebral cortex: Normal and aberrant developmental patterns. In G. W. Kretzberg (Ed.), Advances in Neurology (Vol. 12, pp. 91116 ). New York: Raven Press.Google Scholar
  159. Randolph, T. G. (1944). Allergic headache: An unusual case of milk sensitivity. Journal of the American Medical Association, 126, 430–432.CrossRefGoogle Scholar
  160. Randolph, T. G. (1947). Allergy as a causative of fatigue, irritability and behavior problems in children. Journal of Pediatrics, 31, 560–572.PubMedCrossRefGoogle Scholar
  161. Randolph, T. G. (1951). Allergic myalgia. Journal of the Michigan State Medical Society, 50, 487–494.Google Scholar
  162. Randolph, T. G. (1959). Musculoskeletal allergy in children. International Archives of Allergy and Applied Immunology, 14, 84–96.PubMedCrossRefGoogle Scholar
  163. Rapp, W. (1981). Allergies and the hyperactive Child. New York: Simon and Schuster.Google Scholar
  164. Rinkel, H. J., Randolph, T. G., and Zeller, M. (1951). Food Allergy. Springfield, IL: Charles C Thomas.Google Scholar
  165. Rosenthal, R. H., and Allen, T. W. (1978). An examination of attention, arousal, and learning dysfunctions of hyperkinetic children. Psychological Bulletin, 85, 689–715.PubMedCrossRefGoogle Scholar
  166. Roth, H. P., and Kirchgessner, M. (1981). Zinc and insulin metabolism. Biological Trace Element Research, 3, 13–32.CrossRefGoogle Scholar
  167. Rutter, M. (1983). Low level lead exposure: Sources, effects and implications. In M. Rutter and R. R. Jones (Eds.), Lead versus health: Sources and effects of low level lead exposure (pp. 333–370 ). New York: Wiley.Google Scholar
  168. Sanders, A. (1984). The widening gap: The incidence and distribution of infant mortality and low birth weight in the United States, 1978–1982. Washington DC: Food Research and Action Center.Google Scholar
  169. Sandstead, H. H. (1973). Zinc nutrition in the United States. The American Journal of Clinical Nutrition, 26, 1251–1260.PubMedGoogle Scholar
  170. Sandstead, H. H. (1981). Clinical manifestations of certain classical deficiency diseases. In R. S. Goodhart and M. E. Shils (Eds.), Modern nutrition in health and disease (6th ed.; pp. 685–696). Philadelphia: Lea and Febiger.Google Scholar
  171. Sandstead, H. H. (1980). Zinc in human nutrition. In F. Bronner and J. W. Coburn (Eds.), Disorders of mineral metabolism, Vol. 1, Trace minerals (pp. 93–157 ). New York: Academic Press.Google Scholar
  172. Sarrat, R. (1980). Morphological and functional relations between pancreatic islets and allocortex. Zentralblatt of Veterinary Medicine: Comparative Anatomy, Histology and Embryology, 9, 52–64.CrossRefGoogle Scholar
  173. Schildkraut, J. J. (1965). The catecholamine hypothesis of affective d’isorders: A review of supporting evidence. American Journal of Psychiatry, 122, 509–522.PubMedGoogle Scholar
  174. Schroeder, H. A. (1973). The trace elements and man (pp. 1–21 ). Old Greenwich, CT: DelvinAdair.Google Scholar
  175. Schroeder, H. A. (1974). The poisons around us (pp. 6–58 ). Bloomington, IN: University Press.Google Scholar
  176. Scott, B. S., Becker, L. E., and Petit, T. L. (1983). Neurobiology of Down’s syndrome. Progress in Neurobiology, 21, 199–237.PubMedCrossRefGoogle Scholar
  177. Seltzer, S., Stoch, R., and Marcus (1982). Alteration of human pain thresholds by nutritional manipulation and L-tryptophan supplementation. Pain, 385–393.Google Scholar
  178. Schofield, A. T. (1908). A case of egg poisoning. Lancet, 1, 716.CrossRefGoogle Scholar
  179. Sharma, R. P. (1981). Soil-plant-animal distribution of cadmium in the environment. In J. O. Nriagu (Ed.), Cadmium in the environment: Part II, Health effects (pp. 588–605 ). Burlington, Ontario: Wiley.Google Scholar
  180. Shopsin, B. (1978). Enhancement of the antidepressant response to L-tryptophan by a liver pyrrolase inhibitor: A rational treatment approach. Neuropsychobiology, 4, 188–192.PubMedCrossRefGoogle Scholar
  181. Singh, M. V., and Kay, S. R. (1976). Wheat gluten as a pathogenic factor in schizophrenia. Science, 191, 401–402.PubMedCrossRefGoogle Scholar
  182. Sky, D. A., and Barnes, R. H. (1973). Malnutrition and animal behavior. In D. J. Kallen (Ed.), Nutrition, development and social behavior (pp. 242). DHEW Publication No. NIH 73. Washington DC: U.S. Government Printing Office.Google Scholar
  183. Snyder, S. H. (1980). Biological aspects of mental disorder. New York: Oxford University Press.Google Scholar
  184. Sobotka, T. J. (1976). Estimates of average, 90th percentile and maximum daily intakes of FD and C artificial colors in one day’s diets among two age groups of children. Food and Drug Administration Biochemical Toxicology Branch Report. Washington, DC: U.S. Government Printing Office.Google Scholar
  185. Sobotka, T. (1978). Hyperkinesis and food additives: A review of experimental work. FDA By-Lines, 4, 165–176.Google Scholar
  186. Sokoloff, L., Fitzgerald, G. G., and Kaufman, E. E. (1977). Cerebral nutrition and energy metabolism. In R. J. Wurtman and J. J. Wurtman (Eds.) Nutrition and the brain, Vol. 1, Determinants of the availability of nutrients to the brain (pp. 87–139 ). New York: Raven Press.Google Scholar
  187. Speer, F. (1970). Allergy of the nervous system. Springfield, IL: Charles C Thomas.Google Scholar
  188. Speer, F. (1975). Multiple food allergy, Annals of Allergy, 34, 71–76.PubMedGoogle Scholar
  189. Stein, L., and Wise, C. D. (1971). Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science, 171, 1032–1036.PubMedCrossRefGoogle Scholar
  190. Strauss, H., and Wechsler, I. S. (1945). Clinical and EEG studies of changes of cerebral function associated with variations in the blood. American Journal of Psychiatry, 102, 34.Google Scholar
  191. Sudmeier, J. L., and Bell, S. J. (1981). Cadmium-113 nuclear magnetic resonance studies of bovine insulin: Two-zinc insulin hexamer specifically binds calcium. Science, 212, 560–562.PubMedCrossRefGoogle Scholar
  192. Swanson, J., and Kinsbourne, M. (1980). Food dyes impair performance of hyperactive children on a laboratory learning test. Science, 207, 1485–1487.PubMedCrossRefGoogle Scholar
  193. Thatcher, R. W., and Lester, M. L. (1985). Nutrition, environmental toxins and computerized EEG: A mini-max approach to learning disabilities. Journal of Learning Disabilities, 18, 287–297.PubMedCrossRefGoogle Scholar
  194. Thatcher, R. W., Lester, M. L., McAlaster, R., and Horst, R. (1982). Effects of low levels of cadmium and lead on cognitive functioning in children. Archives of Environmental Health, 37, 159–166.PubMedGoogle Scholar
  195. Thatcher, R. W., McAlaster, R., and Lester, M. L. (1984). Evoked potentials related to hair cadmium and lead. In R. Karrer, D. Cohen, and P. Tueting (Eds.), Brain and Information: Event related potentials (Vol. 425, pp. 421–423 ). New York: New York Academy of Sciences.Google Scholar
  196. Thatcher, R. W., McAlaster, R., Lester, M. L., and Cantor, D. S. (1985). Comparisons among nutrition, EEG and trace elements in predicting reading ability in children. In S. J. White and V. Tellar (Eds.), Discourses in reading and linguistics (Vol. 433, pp. 87–96 ). New York: New York Academy of Sciences.Google Scholar
  197. Thompson, M. (1949). The cry and the covenant. Garden City, NY: Doubleday and Company.Google Scholar
  198. Ulus, I., Hirsch, M. J., and Wurtman, R. J. (1977). Transsynaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: Evidence that choline administration increases cholinergic transmission. Proceedings of the National Academy of Sciences, 74, 798–800.CrossRefGoogle Scholar
  199. U.S. Senate Commission on Nutrition and Human Needs. (1977). Dietary goals for the United States. Washington, DC: U.S. Government Printing Office.Google Scholar
  200. Vallee, B. L., and Falchuk, K. H. (1983). Gene Expression and zinc. In B. Sarkar (Ed.), Biological aspects of metals and metal-related diseases (pp. 1–14 ). New York: Raven.Google Scholar
  201. Vallee, B. L., and Hoch, F. L. (1959). Trace elements in cellular functions, International Review of Cytology, 8, 345–386.CrossRefGoogle Scholar
  202. Van Kammen, D. P., Mann, L. S., Sternberg, D. E., Scheinin, M., Ninan, P. T., Marder, S. R., Van Kammen, W. B., Rieder, R. O., and Linnoila, M. (1983). Dopamine-B-hydroxylase activity and homovanollic acid in spinal fluid of schizophrenics with brain atrophy. Science, 220, 974–976.PubMedCrossRefGoogle Scholar
  203. Van Woert, M. H., Jutkowitz, R., Rosembaum, D., and Bauers, M. B. (1976). Serotonin and myoclonus. Monograms in the Neurological Sciences, 3, 71–80.Google Scholar
  204. Van Woert, M. H., Rosembaum, D., Howieson, J., and Bauers, M. B. (1977). Long-term therapy of myoclonus and other neurologic disorders with L-5-hydroxytryptophan and carbidopa. New England Journal of Medicine, 296, 70–75.PubMedCrossRefGoogle Scholar
  205. Venugopal, B., and Luckey, T. D. (1980). Metal toxicity in mammals (Vol. 2, pp. 76–86 ). New York: Plenum Press.Google Scholar
  206. Volkl, A., Beriet, H., and Ule, G. (1974). Trace elements (Cu, Fe, Mg, Zn) of the brain during childhood. Neuropediatrics, 5, 236–242.CrossRefGoogle Scholar
  207. Von Hilsheimer, G. (1974). Allergy, toxins and the learning disabled child. San Rafael, CA: Academic Therapy Publications.Google Scholar
  208. Weingartner, H., Rudorfer, M. V., Buchsbaum, M. S., and Linnoila, M. (1983). Effects of serotonin on memory impairments produced by ethanol. Science, 221, 472–473.PubMedCrossRefGoogle Scholar
  209. Weiss, B. (1983). Behavioral toxicity of Food Additives. In J. Weininger and G. M. Briggs (Eds.), Nutrition update (Vol. 1, pp. 22–38 ). New York: Wiley.Google Scholar
  210. Weiss, B., Williams, J., Margen, S., Abrams, B., Caan, B., Citron, L., Cox, C., McKibben, J., Ogar, D., and Schultz, S. (1980). Behavioral responses to artificial food colors. Science, 270, 1487–1489.CrossRefGoogle Scholar
  211. Weiss, J. M., and Kaufman, H. S. (1971). A subtle organic component in some cases of mental illness, Archives of General Psychiatry, 25, 74.PubMedCrossRefGoogle Scholar
  212. Weiss, P. A. (1969). The living system: Determinism stratified. In A. Koestler and J. R. Smythies (Eds.), Beyond reductionism: New perspectives in the life sciences (pp. 3–55 ). London: Hutchinson.Google Scholar
  213. Wender, E. (1977). Food additives and hyperkinesis. American Journal of the Diseases of Children, 131, 1204.Google Scholar
  214. Williams, R. J. (1956). Biochemical individuality. Austin: University of Texas Press.Google Scholar
  215. Williams, R. J., and Kalita, D. K. (1977). A physician’s handbook on orthhomolecular medicine. Elmsford, NY: Pergamon Press.Google Scholar
  216. Woolley, D. W., and Shaw, E. (1954). A biological and pharmacological suggestion about certain mental disorders. Proceedings of the National Academy of Sciences, 40, 228.CrossRefGoogle Scholar
  217. Wurtman, R. J. (1980). Nutritional control of brain tryptophan and serotonin. In O. Hayaiski, Y. Ishimura, and R. Kido (Eds.), Biochemical and medical aspects of tryptophan metabolism. Elsevier: North-Holland Biomedical Press.Google Scholar
  218. Wurtman, R. J., and Fernstrom, J. D. (1974). Effects of diet on brain neurotransmitters. Nutrition Review, 23, 193–208.Google Scholar
  219. Wurtman, R. J., and Wurtman, J. J. (1979). Nutrition and the brain, Vol. 3, Disorders of eating and nutrients in treatment of brain diseases. New York: Raven Press.Google Scholar
  220. Wurtman, R. J., Hirsch, M. J., and Growden, J. H. (1977). Lecithin consumption raises serum free choline levels. Lancet, 2, 68–69.PubMedCrossRefGoogle Scholar
  221. Wurtman, R. J., Hefti, F., and Melamed, E. (1981). Precursor control of neurotransmitter synthesis. Pharmacological Reviews, 32, 315–335.Google Scholar
  222. Wurtman, R. J., Magil, S. G., and Reinstein, D. K. (1981). Pirecetam diminishes hippocampal acetylcholine level in rats. Life Sciences, 28, 1091–1093.PubMedCrossRefGoogle Scholar
  223. Yaryura-Tobias, J. A. (1973). The behavioral-gluco-dysrhythmic triad. American Journal of Psychiatry, 130.Google Scholar
  224. Yates, C. M., Simpson, J., Maloney, A., Gordon, A., and Reid, A. H. (1980). Alzheimer-like cholinergic deficiency in Down’s syndrome. Lancet, 8, 979–981.CrossRefGoogle Scholar
  225. Yogman, M. W., Zeisel, S. H., and Roberts, C. (1987). Dietary precursors of serotonin and newborn behavior. In R. J. Wurtman (Ed.), Research Strategies for Assessing the Effects of Foods and Nutrients (pp. 44–68 ). New York: Pergamon.Google Scholar
  226. Yoshinaga, T., and Ogawa, S. (1975). Electron microscopic study of zinc in beta-cells of pancreatic islets of rat under conditions stimulating the excretion of insulin. Acta Histochemistry, 53, 161–174.Google Scholar
  227. Young, S. N., and Sourkes, T. L. (1977). Tryptophan in the central nervous system: Regulation and significance. Advances in Neurochemistry, 2, 133.CrossRefGoogle Scholar
  228. Yuwiler, A., Brammer, G. L., Morley, J. E., Raleigh, M. J., Flannery, J. W., and Geller, E. (1981). Short-term and repetitive administration of oral tryptophan in normal men. Archives of General Psychiatry, 38, 619–626.PubMedCrossRefGoogle Scholar
  229. Zeisel, S. H., Mauron, C., Watkins, C. J., and Wurtman, R. J. (1981). Developmental changes in brain indoles, serum tryptophan and other serum neutral acids in the rat. Developmental Brain Research, 1, 551–564.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Michael L. Lester
    • 1
  • Diana H. Fishbein
    • 2
  1. 1.Department of PediatricsChildren’s Medical CenterTulsaUSA
  2. 2.Addiction Research CenterNational Institute on Drug Abuse, and the University of BaltimoreBaltimoreUSA

Personalised recommendations