Advertisement

Lakes pp 295-323 | Cite as

Freshwater Carbonate Sedimentation

  • K. Kelts
  • K. J. Hsü

Abstract

Carbonate minerals are a common constituent of lacustrine sediments. The great variability with respect to geological setting, climatic environment, water chemistry, and biological activity limits generalizations about mechanisms of carbonate sedimentation. On the whole, in constrast to an oceanic environment, the bulk of primary lacustrine carbonates are inorganic chemical precipitates. Two distinctly different geological settings can be recognized: (1) carbonate and evaporite deposition in brine lakes or on playas in arid regions (see Chap. 8, this volume), and (2) carbonate sedimentation in fresh- and brackish-water lakes in humid regions. Occurrences of lacustrine chalks and marls in young geological formations of temperate regions have been described since the time of Lyell (1830). In northern America and Europe, Late Quaternary chalks were found near still existing lakes and their genesis was related to a postglacial period of climatic amelioration (e.g., Heim, 1919). Typically, these deposits are fine grained, either rhythmically laminated or massive, white to dull-yellowish gray chalks to marls. This distinction is qualitative based on a bulk carbonate content boundary around 60%. The dominant mineral is calcite. Similar varve-like carbonate or marl sediments were found in older lacustrine deposits (e.g., Bradley, 1929). Nipkow (1920) described recent analogies to laminated lacustrine carbonates in Lake Zurich; the light laminae are rich in CaCO3. Forel (1901) early recognized a biological role, but Minder (1922, 1926) developed the concept of inorganic, biogenically induced calcite precipitation. Meanwhile lacustrine marls in regions of Quaternary glaciation around the Great Lakes in North America were studied (e.g., Davis, 1901; Pollock, 1918). Calcite precipitation in those biologically active hardwater lakes (e.g., Halbfass, 1923; Ruttner, 1962; Pia, 1933; Ohle, 1952; Hutchinson, 1957; Wetzel, 1975) was soon related to extraction of Co2 during photosynthesis by algae.

Keywords

Green Lake Calcite Crystal Calcium Carbonate Precipitation Calcite Precipitation Diatom Frustule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-el-Malek, Y, and S. G. Rizk. (1963). Bacterial sulfate reduction and the development of alkalinity. J. Appl. Bacteriol., 26: 7–26.Google Scholar
  2. Anderson, R. Y., and D. W. Kirkland. (1960). Origin, varves and cycles of Jurassic Todilto Formation, New Mexico. Am. Assoc. Petrol. Geol. Bull., 44: 37–52.Google Scholar
  3. Anderson, R. Y. and D. W. Kirland. (1969). Paleoecology of an Early Pleistocene Lake on The High Plains of Texas. Geol. Soc. Am. Memoir, 113, 211 p.Google Scholar
  4. Ball, M. M. (1967). Carbonate sand bodies of Florida and the Bahamas. J. Sed. Petrol., 37: 556–591.Google Scholar
  5. Berner, R. A. (1971). Chemical Sedimentology. McGraw-Hill, New York, NY. 240 pp.Google Scholar
  6. Berner, R. A. (1975). The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta, 39: 489–504.Google Scholar
  7. Berner, R. A. (1976). The solubility of calcite and aragonite in sea water at atmospheric pressure and 34.5%o salinity. Am. J. Sci., 276: 713–731.Google Scholar
  8. Berner, R. A., and J. W. Morse. (1974). Dissolution kinetics of calcium carbonate in sea water: IV. Theory of calcite dissolution. Am. J. Sci., 274: 108–135.Google Scholar
  9. Berner, R. A., M. R. Scott, and C. Thomlinson, (1970). Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol. Oceanogr., 15: 544–549.Google Scholar
  10. Bloesch, J. (1974). Sedimentation und Phosphathaushalt im Vierwaldstättersee, Horwer Bucht und im Rotsee. Schweiz. Z. Hydrol., 36 (1): 71–186.Google Scholar
  11. Bradley, W. H. (1929). The varves and climate of the Green River Epoch. U.S. Geol. Sur. Prof. Pap., 158: 87–110.Google Scholar
  12. Bradley, W. H. (1937). Non-glacial varves, with selected bibliography. Pp. 32–42. In: Rept. Comm. on Geol. Time. Natl. Res. Conc. Ann. Rpt. App. A.Google Scholar
  13. Bradley, W. H. (1948). Limnology and the Eocene lakes of the Rocky Mountain region. Geol. Soc. Am. Bull., 59 (2): 635–648.Google Scholar
  14. Bradley, W. H. (1965). Vertical density currents. Science, 150 (3702): 1423–1428.PubMedGoogle Scholar
  15. Bricker, O. P., and B. N. Troup. (1975). Sediment-water exchange in Chesapeake Bay. Estuarine Res., 1: 1–28.Google Scholar
  16. Brunskill, G. J. (1969). Fayetteville Green Lake, New York. II: Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol. Ocean/ ogr., 14 (6): 830–847.Google Scholar
  17. Brunskill, G. J., and R. C. Hariss. (1969). Fayetteville Green Lake New York. IV: Interstitial water chemistry of the sediments. Limnol. Oceanogr., 14: 858–861.Google Scholar
  18. Calvert, S. E. (1966). Origin of diatom-rich, varved sediments from the Gulf of California. J. Geol., 74: 546–565.Google Scholar
  19. Davis, C. A. (1901). A second contribution to the natural history of marl. J. Geol., 8: 491–506.Google Scholar
  20. Davoud, E. (1976). Evolution diagenetique du carbonate de calcium dan les sédiments holocenes du lac de Morat (Suisse). Eclogae Geol. Helv., 69: 190–196.Google Scholar
  21. Dean, W. E., Jr., and E. Gorham. (1976). Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol. Oceanogr., 21: 261–268.Google Scholar
  22. de Boer, R. D. (1977). Influence of seed crystals on the precipitation of calcite and aragonite. Am. J. Sci., 277: 38–61.Google Scholar
  23. De Geer, G. (1912). A geochronology of the last 12,000 years. Pp. 241–253. 11th. Int. Geol. Cong. Stoklm. Proc. S.Google Scholar
  24. Dell, C. J. (1972). The origin and characteristics of Lake Superior sediments. Pp. 361–370. Great Lakes Res. Conf. 15th Proc.Google Scholar
  25. Emerson, S. (1975). Chemically enhanced CO2 gas exchange in a eutrophic lake: a general Model. Limnol. Oceanogr., 20 (5): 743–753.Google Scholar
  26. Emerson, S. (1976). Early diagenesis in the sediments of an eutrophic lake. Geochim. Cosmochim. Acta, 40: 925–934.Google Scholar
  27. Finckh, P., and K. Kelts. (1976). Geophysical investigations into the nature of Pre-Holocene sediments of Lake Zurich. Eclogae Geol. Helv., 69 (1): 139–148.Google Scholar
  28. Folk, R. L. (1974). The natural history of cristalline calcium carbonate: effect of magnesium content and salinity. J. Sed. Petrol., 44: 40–53.Google Scholar
  29. Folk, R. L., and L. S. Land. (1975). Mg/Ca ratio and salinity: two controls over the crystallization of dolomite. Am. Assoc. Petrol. Geol., 59: 60–68.Google Scholar
  30. Forel, F. A. (1901). Handbuch der Seenkunde. J. Engelhorn Verlag, Stuttgart. 247 pp.Google Scholar
  31. Geyh, M., J. Merkt, and H. Müller. (1971). Sediment, Pollen and Isotopenanalysen an jahreszeitlich geschichteten Ablagerungen im zentralen Teil des Schleinsees. Arch. Hydrobiol., 69 (3): 366–399.Google Scholar
  32. Gieskes, J. (1974). The alkalinity: total carbon dioxide system in seawater. Pp. 123–151. In: E. Goldberg (ed.), The Sea. Vol. 5.Google Scholar
  33. Gyger, M., M. Muller-von Moes, and C. Schindler. (1976). Untersuchung zur Klassification Spät und nacheiszeitlicher Sedimente aus dem Zürichsee. Schweiz. Min. Petrog. Mitt., 56: 387–400.Google Scholar
  34. Halbfass, W. (1923). Grundzüge einer Vergleichenden Seenkunde. Bomtraeger, Berlin. 337 pp.Google Scholar
  35. Harped, H. S., and R. Davis, Jr. (1943). The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J. Am. Chem. Soc., 65: 2030–2037.Google Scholar
  36. Harried, H. S., and S. R. Scholes. (1941). The ionization constant of HCO3 from 0° to 50°C. J. Am. Chem. Soc., 63: 1706–1709.Google Scholar
  37. Heim, A. (1919). Geologie der Schweiz: Molasseland und Juragebirge. Tauchnitz, Leipzig. 704 pp.Google Scholar
  38. Hsü, K. J. (1963). Solubility of dolomite and composition of Florida groundwaters. J. Hydrology, 1: 288–310.Google Scholar
  39. Hsü, K. J. (1967). Chemistry of dolomite formation: Pp. 169191. In: G. V. Chilingar, H. J. Bissell, and R. W. Fairbridge eds.), Carbonate Rocks, Physical and Chemical Aspects. Elsevier, Amsterdam.Google Scholar
  40. Hsü, K. J. (1978). Stratigraphy of the lacustrine sedimentation in the Black Sea. In: D. Ross and Y. Neprochov, et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Vol. 42B. U.S. Govt. Printing Office, Washington, D.C., pp. 509–524.Google Scholar
  41. Hull, H., and A. G. Turnbull. (1973). A thermochemical study of monohydrocalcite. Geochim. Cosmochim. Acta, 37: 685–695.Google Scholar
  42. Hutchinson, G. E. (1957). A Treatise on Limnology. I and H. J. Wiley, London. 1015 pp.Google Scholar
  43. Hutchinson, G. E. (1975). A Treatise on Limnology. Ill. J. Wiley, New York, NY. 660 pp.Google Scholar
  44. Irion, G. (1973). Die anatolischen Salzseen, ihr Chemismus und die Entstehung ihrer chemischen Sedimente. Arch. Hydrobiol., 71 (4): 517–557.Google Scholar
  45. Jacobson, R. L., and D. Langmuir. (1974). Dissociation constants of calcite and CaHCO3 from 0°-50°C. Geochim. Cosmochim. Acta, 38: 301–318.Google Scholar
  46. Kramer, J. R. (1967). Equilibrium concepts in natural water systems. Adv. Chem. Ser., 67: 243–254.Google Scholar
  47. Krumbein, W. E. (1975). Biogenic monohydrocalcite spherules in lake sediments of Lake Kivu (Africa) and the Solar Lake (Sinai). Sedimentology, 22: 631–635.Google Scholar
  48. Lalou, C. (1957). Studies on bacterial precipitation of carbonates in sea water. J. Sed. Petrol., 27: 190–195.Google Scholar
  49. Lambert, A., K. Kelts, and N. Marshall. (1976). Measurements of density underflows from Walensee, Switzerland. Sedimentology, 23: 87–105.Google Scholar
  50. Lerman, A., D. Lal, and M. F. Dacey. (1974). Stokes settling and chemical reactivity of suspended particles in natural waters. Pp. 17–47. In: R. J. Gibbs (ed.), Suspended Solids in Water. Plenum, New York, NY.Google Scholar
  51. Li, Y. H. (1973). Vertical eddy diffusion coefficient in Lake Zurich. Schweiz. Z. Hydrol., 35: 1–7.Google Scholar
  52. Lippmann, F. (1973). Sedimentary Carbonate Minerals. Springer-Verlag, Berlin. 196 pp.Google Scholar
  53. Logan, B. W., R. Rezak, and R. N. Ginsburg. (1964). Classification and environmental significance of algal stroma-tolites. J. Geol., 72: 68–83.Google Scholar
  54. Lyell, Ch. (1830). Principles of Geology. Vol. 1, J. Murray, London. 519 pp.Google Scholar
  55. Megard, R. O. (1968). Planktonic photosynthesis and the environment of calcite carbonate deposition in lakes. Interim Rept. 2. Limnol Res. Center. U. Minn.Google Scholar
  56. Minder, L. (1922). Ueber biogene Entkalkung im Zürichsee. Verh. Int. Verein. Limnol., 1: 20–23.Google Scholar
  57. Minder, L. (1926). Biologische-chemische Untersuchungen im Zürichsee. Rev. Hydrol., 3 (3): 1–70.Google Scholar
  58. Minder, L. (1943). Der Zurichsee im Lichte der Seetypen-lehre. Neujahrsblatt. Nat. Forsch. Ges. Zürich, 145: 183.Google Scholar
  59. Müller, G. (1966). Die Sedimentbildung im Bodensee. Naturwissenschaften, 53: 237–247.Google Scholar
  60. Müller, G. (1969). Diagenetic changes in interstitial waters of Holocene Lake Constance sediments. Nature, 224: 258–259.Google Scholar
  61. Müller, G. (1970). High magnesian calcite and protodolomite in Lake Balaton (Hungary) sediments. Nature, 226: 749750.Google Scholar
  62. Müller, G. (1971a). Aragonite inorganic precipitation in a freshwater lake. Nature Phy. Sci., 229: 18.Google Scholar
  63. Müller, G. (1971b). Sediments of Lake Constance. Pp. 237–252. In: Sedimentology of Parts of Central Europe. Guidebook, VII Int. Sed. Congress, Heidelberg. 1971.Google Scholar
  64. Müller, G., G. Irion, and U. Foerstner. (1972). Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59 (4): 158–164.Google Scholar
  65. Nipkow, F. (1920). Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z. Hydrol., 1: 1–27.Google Scholar
  66. Nipkow, F. (1927). Ueber das Verhalten der Skelette planktischer Kieselalgen im geschichteten Tiefenschlamm des Zürich und Baldeggersees. Diss ETH Zurich, 445.Google Scholar
  67. Ohle, W. (1952). Die Hypolimnetische-Kohlendioxyd Akkumulation als productionsbiologischer Indicator. Arch. Hydrobiol., 46: 153–285.Google Scholar
  68. O’Melia, C. R. (1972). An approach to the modeling of lakes. Schw. Z. Hydrologie 34 (1), 1–33.Google Scholar
  69. Otsuki, A., and R. G. Wetzel, (1974). Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hard-water lake. Arch. Hydrobiol., 73: 14–30.Google Scholar
  70. Pia, J. (1933). Die rezenten Kalksteine. Leipzig. 418 pp.Google Scholar
  71. Plummer, L. N. (1975). Mixing of seawater with calcium carbonate ground water. Mem. Geol. Soc. Am., 142: 219–236.Google Scholar
  72. Pollock, J. B. (1918). Blue-green algae as agents in the deposition of marl in Michigan lakes. Rept. Mich. Acad. Sci., 20: 247–261.Google Scholar
  73. Ross, D., et al. (1978). Initial Reports of the Deep Sea Drilling Project. Vol. 42B. U.S. Govt. Printing Office, Washington, D.C. 1244 pp.Google Scholar
  74. Rossknecht, H. (1977). Zur Autochthonen Calcitfällung im Bodensee-Obersee. Arch. Hydrobiol. 81: 35–64.Google Scholar
  75. Ruttner, F. (1962). Grundriss der Limnologie. Gruyter, Berlin. 314 pp.Google Scholar
  76. Santschi, P. (1975). Chemische Prozesse im Bielersee. Ph.D. thesis, University of Bern, Switzerland 307 pp.Google Scholar
  77. Sapozhnikov, D. G., and A. J. Isvetkov. (1959). Precipitation of hydrous calcium carbonate on the bottom of lake Issyk-Kul. Dokl. Acad. Nauk. SSSR, 124: 402–405.Google Scholar
  78. Schäfer, A. (1972). Petrographische und Stratigraphische Untersuchungen an den rezenten Seesedimenten des Untersees/Bodensee. Neues Jahrb. Min. Abh., 117: 118–142.Google Scholar
  79. Schäfer, A. (1973). Zur Entstehung von Seekreide. Neues Jahrb. Geol. Pal. Mh., 1973 (4): 216–230.Google Scholar
  80. Schäfer, A., and K. R. Stapf. (1972). Calcite whitings in Bodensee-Untersee. Natur. Mus., 102 (8).Google Scholar
  81. Schöttle, M., and G. Müller. (1968). Recent carbonate sedimentation in the Gnadensee (Lake Constance) Germany. Pp. 148–156. In: G. Müller and G. Friedman (eds.), Recent Developements in Carbonate Sedimentology in Central Europe. Springer-Verlag, Berlin.Google Scholar
  82. Serruya, C. (1969a). Le dépot du lac Léman en relation avec l’evolution du bassin sédimentaire et les caractéres du milieu lacustre. Arch. Sci. Geneve, 22: 125–254.Google Scholar
  83. Serruya, C. (1969b). Problems of sedimentation in the Lake of Geneva. Verh. Int. Verein. Limnol., 17: 208–217.Google Scholar
  84. Stiller, M., and M. Magaritz. (1974). Carbon-13 enriched carbonate in interstitial waters of lake Kinneret Sediments. Limnol. Oceanogr., 19 (5): 849–853.Google Scholar
  85. Stoffers, P. (1975a). Recent carbonate sedimentation in the lakes of Plitvice (Yugoslavia). Neues Jahrb. Min. Mh., 1975 (9): 412–418.Google Scholar
  86. Stoffers, P. (1975b). Sedimentpetrographische, geochemische und paläoklimatische Untersuchungen an Ostafrikanischen Seen. Habilitationschrift, Univ. Heidelberg. 118 pp.Google Scholar
  87. Stoffers, P., and R. Fischbeck (1974). Monohydrocalcite in the sediments of Lake Kivu (East Africa). Sedimentology, 21: 163–170.Google Scholar
  88. Strong, A., and B. J. Eadie. (1978). Satellite observations of calcium carbonate precipitation in the Great Lakes. Limnol. Oceanogr. (In press).Google Scholar
  89. Sturm, M., and A. Matter. (1972). Sedimente und Sedimentationsvorgänge im Thunersee. Eclogae Geol. Helv., 65 (3): 563–590.Google Scholar
  90. Stumm, W., and J. Morgan. (1970). Aquatic Chemistry. Wiley Interscience, New York, NY. 563 pp.Google Scholar
  91. Stumm, W., and E. Stumm-Zollinger. (1968). Chemische Prozesse in natülichen Gewässern. Chimia, 22: 325–337.Google Scholar
  92. Stuvier, M. (1970). Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J. Geophys. Res., 75: 5247–5257.Google Scholar
  93. Taylor, G. F. (1975). The occurrence of monohydrocalcite in two small lakes in the southeast of South Australia. Am. Mineral., 60: 690–697.Google Scholar
  94. Thomas, E. A. (1969). Kultur beinflusste chemische und biologische Veränderungen des Zürichsees im Verlauf von 70 Jahren. Mitt. Int. Verein. Limnol., 17: 226–239.Google Scholar
  95. Thomas, R. L., A. L. Kemp, and C. F. M. Lewis. (1973). The surficial sediments of Lake Huron. Can. J. Earth Sci., 10: 226–271.Google Scholar
  96. Thompson, R., and K. Kelts. (1974). Holocene sediments and magnetic stratigraphy from Lakes Zug and Zurich, Switzerland. Sedimentology, 21: 577–596.Google Scholar
  97. Truesdell, A. H., and B. F. Jones. (1974). WATEQ, a computer program for calculating chemical equilibria of natural water. J. Res. U.S. Geol. Survey, 2 (2): 233–248.Google Scholar
  98. Verduin, J. (1975). Rate of carbon dioxide transport acrossair-water boundaries in Lakes. Limnol. Oceanogr., 20: 1052.Google Scholar
  99. Vernet, J. P., M. Meybeck, A. Pachoud, and G. Scolari. (1971). Le Léman: Un synthese bibliographique. Bull. Bur. Res. Geol. Mine. (Ser. 2), IV (2): 47–84.Google Scholar
  100. Welten, M. (1944). Pollenânalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veroeffentl. Geobot. Inst. Ruebel. in Zurich, 21. 201 pp.Google Scholar
  101. Wetzel, R. G. (1960). Marl encrustations on hydrophytes in several Michigan lakes. Oikos, 11: 223–228.Google Scholar
  102. Wetzel, R. G. (1975). Limnology. W. B. Saunders, Philadelphia, PA. 743 pp.Google Scholar
  103. Wigley, T. M. L., and L. N. Plummer. (1976). Mixing of carbonate waters. Geochim. Cosmochim. Acta, 40: 989–995.Google Scholar
  104. Zimmermann, P. (1961). Chemische und bakteriologische Untersuchungen im unteren Zürichsee während der Jahre 1948–1957. Schweiz. Z. Hydrol., 23: 343–395.Google Scholar
  105. Zimmermann, U. (1975). Limnologische Untersuchungen am Trinkwasserspeicher Zürichsee. Gas-Wasser-Abwasser, 55 (9): 473–480.Google Scholar
  106. Züllig, H. (1956). Sedimente als Ausdruck des Zustandes eines Gewässers. Schweiz. Z. Hydrol., 18. 487–529.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • K. Kelts
  • K. J. Hsü

There are no affiliations available

Personalised recommendations