Advertisement

Lakes pp 237-293 | Cite as

Saline Lakes

  • Hans P. Eugster
  • Lawrence A. Hardie

Abstract

Most lakes are well flushed and the chemical constituents of their waters do not accumulate beyond the potable range. In unusual circumstances, however, the solute load may be increased and the lake then becomes saline. This is caused either by evaporation exceeding inflow or by the inflow being saline or both. Saline lakes are quite common in certain parts of the earth, but they have neither the size nor abundance of normal lakes. For this reason, few extensive studies have been made of such lakes and consequently their hydrologic, geochemical, sedimentological, and biological environments remain little explored. This is a pity, for saline lakes have much to teach us about processes under extreme conditions and, once we understand them, we will have greatly improved our understanding also of normal lakes. This paucity of studies is also surprising because saline lakes not only are of economic significance but are important in the geologic record as sensitive indicators of past tectonic and climatic events.

Keywords

Saline Lake Great Salt Lake Magnesian Calcite Lake Brine Evaporative Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assaf, G. and Nissenbaum, A. (1977). The evolution of the Upper Water Mass of the Dead Sea, 1819–1976. In: Desertic Terminal Lakes, D. C. Greer, ed., Utah Water Research Lab., Logan, Utah: 61–72.Google Scholar
  2. Baker, B. H. (1958). Geology of the Magadi area. Rep. Geol. Surv. Kenya, 42. 81 pp.Google Scholar
  3. Baker, B. H., L. A. J. Williams, J. A. Miller, and F. J. Fitch. (1971). Sequence and geochronology of the Kenya rift volcanics. Tectonophysics 11: 191–215.CrossRefGoogle Scholar
  4. Barnes, L. (1965). Geochemistry of Birch Creek, Inyo County, California, a travertine depositing creek in an arid climate. Geochim. Cosmochim. Acta, 29: 85–112.CrossRefGoogle Scholar
  5. Barnes, L., and J. R. O’Neil. (1971). Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California. Geochim. Cosmochim. Acta, 35: 699–718.CrossRefGoogle Scholar
  6. Barshad, I. (1966). The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. Proc. Int. Clay Conf., 6: 167–173.Google Scholar
  7. Bathurst, R. G. C. (1971). Carbonate Sediments and their Diagenesis: Developments in Sedimentology. Vol. 12. Elsevier, New York, NY. 620 pp.Google Scholar
  8. Baumann, A., U. Förstner, and R. Rhode. (1975). Lake Shala: Water chemistry, mineralogy and geochemistry of sediments in an Ethiopian rift lake. Geol. Rundschau, 64: 593–609.CrossRefGoogle Scholar
  9. Beadle, L. C. (1932). Scientific results of the Cambridge expedition to the East African Lakes 1930–31. Linnean Soc. (Zool.) J., 38: 157–211.CrossRefGoogle Scholar
  10. Beadle, L. C. (1974). The Inland Waters of Tropical Africa. Longman, London. 365 pp.Google Scholar
  11. Begin, Z. B., A. Ehrlich, and Y. Nathan. (1974). Lake Lisan, the Pleistocene precursor of the Dead Sea. Geol. Survey Israel Bull. 63. 30 pp.Google Scholar
  12. Bentor, Y. K. (1961). Some geochemical aspects of the Dead Sea and the question of its age. Geochim. Cosmochim. Acta, 25: 239–260.CrossRefGoogle Scholar
  13. Berner, R. A. (1975). The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta, 39: 489–504.CrossRefGoogle Scholar
  14. Boles, J. R. (1971). Synthesis of analcime from natural heulandite and clinoptilolite. Am. Mineral., 56: 1724–1734.Google Scholar
  15. Bonython, C. W. (1955). The area, volume and salt content in Lake Eyre, South Australia. Rept. Lake Eyre Comm., Royal Geog. Soc. Australia.Google Scholar
  16. Bradley, W. H. (1929). The varves and climate of the Green River epoch. Pp. 87–110. U.S. Geol. Survey Prof. Paper 158-E.Google Scholar
  17. Bradley, W. H. (1931). Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah. U.S. Geol. Survey Prof. Paper 168. 58 pp.Google Scholar
  18. Bradley, W. H. (1964). Geology of the Green River Formation and associated Eocene rocks in southwestern Wyoming and adjacent parts of Colorado and Utah. U.S. Geol. Survey Prof. Paper 496-A. 86 pp.Google Scholar
  19. Bradley, W. H. (1970). Green River oil shale-concept of origin extended. Geol. Soc. Am. Bull., 81: 990–993.Google Scholar
  20. Bradley, W. H., and H. P. Eugster. (1969). Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming. U.S. Geol. Survey Prof. Paper 496-B. 71 pp.Google Scholar
  21. Brock, T. D., S. Cook, S. Peterson, and J. L. Mosser. (1976). Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta, 40: 493–500.CrossRefGoogle Scholar
  22. Butzer, K. W., G. L. Isaac, J. L. Richardson, and C. Washbourn-Kamau. (1972). Radiocarbon dating of East African lake levels. Science, 175: 1069–1076.PubMedCrossRefGoogle Scholar
  23. Callender, E. (1969). Origin and diagenesis of lacustrine carbonate minerals. Geol. Soc. Amer. Abstracts with Programs, part 7, 29.Google Scholar
  24. Calvert, S. E. (1966). Origin of diatom-rich varved sediments from the Gulf of California. J. Geol., 74: 546–565.CrossRefGoogle Scholar
  25. Carroll, D. (1962). Rain-water as a chemical agent of geologic processes-a review. U.S. Geol. Survey Water-Supply Paper 1535-G.Google Scholar
  26. Cheverry, C. (1974). Contribution à l’étude pédologique des polders du lac Tchad. Dynamique des sels en milieu continental subaride dans des sédiments argileux et organiques. Thèse, O. R. S. T. O. M., Strasbourg. 275 pp.Google Scholar
  27. Clarke, F. W. (1924). The data of geochemistry: U.S.G.S. Bull. 770, 783 pp (see pp. 156–180 ).Google Scholar
  28. Clayton, R. N., B. F. Jones, and R. A. Berner. (1968). Isotope studies of dolomite formation under sedimentary conditions. Geochim. Cosmochim. Acta 32: 415–432.CrossRefGoogle Scholar
  29. Cleaves, E. T., A. E. Godfrey, and O. P. Bricker. (1970). Geochemical balance of a small watershed and its geomorphic implications. Bull. Geol. Soc. Am., 81: 3015–3032.Google Scholar
  30. Cleaves, E. T., D. W. Fisher, and O. P. Bricker. (1974).Google Scholar
  31. Chemical weathering of serpentinite in the eastern piedmont of Maryland. Bull. Geol. Soc. Am., 85:437–444.Google Scholar
  32. Culbertson, W. C. (1966). Trona in the Wilkins Peak Member of the Green River Formation, southwestern Wyoming. U.S. Geol. Survey Prof. Paper 550-B, B159 - B164.Google Scholar
  33. Culbertson, W. C. (1971). Stratigraphy of the trona deposits in the Green River Formation, southwest Wyoming. Wyoming Univ. Contr. Geol., 10: 15–23.Google Scholar
  34. Cummings, J. M. (1940). Saline and hydromagnesite deposits of British Columbia. British Columbia Dept. of Mines, Bull. No. 3. 160 pp.Google Scholar
  35. D’Ans, J. (1933). Die Lösungsgleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliforschungsanstalt.Google Scholar
  36. Deardorff, D. L., and L. E. Mannion. (1971). Wyoming trona deposits. Wyoming Univ. Contr. Geol. 10: 25–37.Google Scholar
  37. DeBoer, R. B. (1977). Stability of Mg-Ca carbonates. Geochim. Cosmochim. Acta, 41: 265–270.CrossRefGoogle Scholar
  38. Degens, E. T., R. P. Von Herzer, H-K. Wong, W. E. Denser, and H. W. Jannasch. (1972). Lake Kivu: Structure, chemistry and biology of an East African Rift lake. Geol. Rundschau, 62: 245–277.CrossRefGoogle Scholar
  39. Dreyer, J. I., and C. L. Smith. (1977). Repeated wetting and drying of the soil zone as an influence on the chemistry of ground water in arid terrains. 2nd IAGC Symp. Water-Rock Interaction, Strasbourg, I1: 50–55.Google Scholar
  40. Droubi, A., C. Cheverry, B. Fritz, and Y. Tardy. (1976). Géochimie des eaux et des sels dans les sols des polders du lac Tchad: Application d’un modèle thermodynamique de simulation de l’évaporation. Chem. Geol., 17: 165–177.CrossRefGoogle Scholar
  41. Dyni, J. R. (1974). Stratigraphy and nahcolite resources of the saline facies of the Green River Formation in northwest Colorado. Pp. 111–121. Guidebook Rocky Mountain Assoc. Geol.Google Scholar
  42. Dyni, J. R., R. J. Hite, and O. B. Raup. (1970). Lacustrine deposits of bromine-bearing halite, Green River Formation, northwestern Colorado. 3rd Symp. Salt, Northern Ohio Geol. Soc., 1: 166–180.Google Scholar
  43. Eardley, A. J. (1938). Sediments of Great Salt Lake, Utah. Am. Assoc. Petrol. Geol. Bull., 22: 1305–1411.Google Scholar
  44. Eardley, A. J. (1962). Glauber’s salt bed, west of Promontory Point, Great Salt Lake. Utah Geol. Mineral. Survey Special Studies 1. 12 pp.Google Scholar
  45. Eardley, A. J., and V. Gvosdetsky. (1960). Analysis of Pleistocene core from Great Salt Lake, Utah. Geol. Soc. Am. Bull., 71: 1323–1344.CrossRefGoogle Scholar
  46. Eardley, A. J., R. T. Shiley, V. Gvosdetsky, W. P. Nash, M. Dane Picard, D. C. Grey and G. J. Kukla. (1973). Lake cycles in the Bonneville basin, Utah. Geol. Soc. Am., Bull., 84: 211–216.Google Scholar
  47. Eugster, H. P. (1966). Sodium carbonate-bicarbonate minerals as indicators of Pco_. J. Geophys. Res., 71: 3369–3377.CrossRefGoogle Scholar
  48. Eugster, H. P. (1967). Hydrous sodium silicates from Lake Magadi, Kenya. Precursors of bedded chert. Science, 157: 1177–1180.PubMedCrossRefGoogle Scholar
  49. Eugster, H. P. (1969). Inorganic bedded cherts from the Magadi area, Kenya. Contrib. Mineral. Petrol., 22: 1–31.CrossRefGoogle Scholar
  50. Eugster, H. P. (1970). Chemistry and origin of the brines of Lake Magadi, Kenya. Pp. 215–235. Mineral. Soc. Amer. Spec. Paper No. 3.Google Scholar
  51. Eugster, H. P., and I-Ming Chou. (1973). The depositional environment of Precambrian bedded iron-formations. Econ. Geol., 68: 1144–1168.CrossRefGoogle Scholar
  52. Eugster, H. P., and L. A. Hardie. (1975). Sedimentation in an ancient playa-lake complex: the Wilkins Peak member of the Green River Formation of Wyoming. Bull. Geol. Soc. Am., 86: 319–334.CrossRefGoogle Scholar
  53. Eugster, H. P., and B. F. Jones. (1968). Gels composed of sodium aluminum silicate. Lake Magadi, Kenya. Science, 161: 160–164.PubMedCrossRefGoogle Scholar
  54. Eugster, H. P., and B. F. Jones. (1977). The behavior of potassium and silica during closed basin evaporation. 2nd IAGC Symp. Water-Rock Interaction, Strasbourg, II: 1–12.Google Scholar
  55. Eugster, H. P., and G. I. Smith. (1965). Mineral equilibria in the Searles Lake evaporites, California. J. Petrol., 6: 473–522.Google Scholar
  56. Eugster, H. P., and R. C. Surdam. (1973). Depositional environment of the Green River Formation of Wyoming: A preliminary report. Geol. Soc. Am. Bull., 84: 1115–1120.CrossRefGoogle Scholar
  57. Fahey, J. J. (1962). Saline minerals of the Green River For- mation. U.S. Geol. Survey Prof. Paper 405. 50 pp.Google Scholar
  58. Fouch, T. D. (1975). Lithofacies and related hydrocarbon accumulations in Tertiary strata of the western and central Uinta Basin, Utah. Pp. 163–173. In: D. W. Bolyard (ed.), Symposium on Deep Drilling Frontiers in the Central Rocky Mountains. Rocky Mtn. Assoc. Geol.Google Scholar
  59. Friedman, I., G. I. Smith, and K. G. Hardcastle. (1976). Studies of Quaternary saline lakes. II. Isotopic and compositional changes during desiccation of the brines in Owens Lake, California, 1969–1971. Geochim. Cosmochim. Acta, 40: 501–511.CrossRefGoogle Scholar
  60. Füchtbauer, H., and L. A. Hardie. (1976). Experimentally determined homogeneous distribution coefficients for precipitated magnesian calcites: application to marine carbonate cements. Geol. Soc. Am., Abstracts with Program, 876–877.Google Scholar
  61. Gac, J. Y., A. Droubi, B. Fritz, and Y. Tardy. (1977). Geochemical behavior of silica and magnesium during the evaporation of water in Chad. Chem. Geol., 19: 215–228.CrossRefGoogle Scholar
  62. Gale, H. S. (1914). Salt, borax and potash in Saline Valley, California. Bull. U.S. Geol. Surv., 540: 416–421.Google Scholar
  63. Gambell, A. W., and D. W. Fisher. (1966). Chemical composition of rainfall, eastern North Carolina and southeastern Virginia: U.S. Geol. Survey Water-Supply Paper 1535-K. 41 pp.Google Scholar
  64. Garrels, R. M., and F. T. Mackenzie. (1967). Origin of the chemical composition of some springs and lakes. Pp. 222–242. In: Equilibrium Concepts in Natural Water Systems. Am. Chem. Soc., Advances in Chemistry, No. 67.Google Scholar
  65. Garrels, R. M., and F. T. Mackenzie. (1971). Evolution of Sedimentary Rocks. Norton, New York, NY. 397 pp. Gilbert, G. K. (1890). Lake Bonneville, U.S. Geol. Survey Monogr. 1. 438 pp.Google Scholar
  66. Glennie, K. W. (1970). Desert Sedimentary Environments. Elsevier, New York, N.Y. 222 pp.Google Scholar
  67. Goudge, M. F. (1924). Magnesium sulfate in British Columbia. Canada Dept. Mines Rep. 642.Google Scholar
  68. Graf, D. L., A. J. Eardley, and N. F. Shimp. (1961). A preliminary report on magnesium carbonate formation in glacial lake Bonneville. J. Geol., 69: 219–223.Google Scholar
  69. Hahl, D. C. (1968). Dissolved-mineral inflow to Great Salt Lake. Utah Geol. Mineral. Survey, Water Resour. Bull. 10. 35 pp.Google Scholar
  70. Hahl, D. C., and A. H. Handy. (1969). Great Salt Lake, Utah: Chemical and physical variation of the brine, 1963–1966. Utah Geol. Mineral. Survey, Water Resour. Bull. 12. 33 pp.Google Scholar
  71. Hahl, D. C., and R. H. Langford. (1964). Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine; Part II. Utah Geol. Mineral. Survey, Water Resour. Bull. 3. 40 pp.Google Scholar
  72. Hahl, D. C., and C. G. Mitchell. (1963). Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the Salt Lake brine. Part I: Selected hydrologic data. Utah. Geol. Mineral. Survey, Water Resour. Bull. 3. 40 PP.Google Scholar
  73. Hardie, L. A. (1968). The origin of the recent non-marine evaporite deposit of Saline Valley, Inyo County, California. Geochim. Cosmochim. Acta, 32: 1279–1301.CrossRefGoogle Scholar
  74. Hardie, L. A., and H. P. Eugster. (1970). The evolution of closed-basin brines. Mineralog. Soc. Am., Spec. Pub., 3: 273–290.Google Scholar
  75. Hardie, L. A., and H. P. Eugster. (1971). The depositional environment of marine evaporites: a case for shallow, clastic accumulation. Sedimentology, 16: 187–220.CrossRefGoogle Scholar
  76. Hardie, L. A., J. P. Smoot, and H. P. Eugster. (In press). Saline lakes and their deposits: A sedimentological approach. Int. Assoc. Sedimentol. Special Publ.Google Scholar
  77. Hardt, W. F., R. W. Moyle, and L. C. Dutcher. (1972). Proposed water-resources study of Searles Valley, Calif. U.S. Geol. Survey open-file rept.Google Scholar
  78. Hatch, J. R. (1972). Phase relationships in part of the system sodium carbonate-calcium carbonate-carbon dioxide-water at one atmosphere pressure. Ph.D thesis, Univ. Illinois, Urbana, Ill. 85 pp.Google Scholar
  79. Hay, R. L. (1964). Phillipsite of saline lakes and soils. Am. Mineral., 49: 1366–1387.Google Scholar
  80. Hay, R. L. (1968). Chert and its sodium-silicate precursors in sodium-carbonate lakes of East Africa. Contr. Mineral. Petrol., 17: 255–274.CrossRefGoogle Scholar
  81. Hay, R. L. (1970). Silicate reactions in three lithofacies of semi-arid basin, Olduvai Gorge, Tanzania. Pp. 237–255. In: B. A. Morgan (ed.), Mineralogy and Geochemistry of Non-marine Evaporites. Mineralog. Soc. America Spec. Paper 3.Google Scholar
  82. Hem, J. D. (1970). Study and interpretation of the chemical characteristics of natural water. U.S. Geol. Survey Water Supply Paper 1473. 363 pp.Google Scholar
  83. Hsü, K. J., and C. Siegenthaler. (1969). Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12: 11–25.CrossRefGoogle Scholar
  84. Hunt, C. B., T. W. Robinson, W. A. Bowles, and A. L. Washburn. (1966). Hydrologic basin, Death Valley, California. U.S. Geol. Surv. Prof. Paper 494-B.Google Scholar
  85. Hutchinson, G. E. (1937) Limnological studies in Indian Tibet. Int. Rev. Hydrobiol., 35: 134–177.CrossRefGoogle Scholar
  86. Iijima, A., and R. L. Hay. (1968). Analcime composition in the Green River Formation of Wyoming. Am. Mineral., 53: 184–200.Google Scholar
  87. Jones, B. F. (1965). The hydrology and mineralogy of Deep Springs Lake, Inyo County, California. U.S. Geol. Survey Prof. Paper 502-A. 56 pp.Google Scholar
  88. Jones, B. F. (1966). Geochemical evolution of closed basin waters in the western Great Basin. Pp. 181–200. Ohio Geol. Soc. Symposium on Salt, 2nd, Ohio Geol. Soc. Cleveland 1966, 1.Google Scholar
  89. Jones, B. F., H. P. Eugster, and S. L. Rettig. (1977). Hydrochemistry of the Lake Magadi Basin, Kenya. Geochim. Cosmochim. Acta, 41: 53–72.CrossRefGoogle Scholar
  90. Jones, B. F., S. L. Rettig, and H. P. Eugster. (1967). Silica in alkaline brines. Science, 158: 1310–1314.PubMedCrossRefGoogle Scholar
  91. Junge, C. E., and R. Werby. (1958). The concentration of chloride, sodium, potassium, calcium, and sulfate in rain water over the United States. J. Meteorol., 15: 417–425.CrossRefGoogle Scholar
  92. Katz, A. (1973). The interaction of magnesium with calcite during growth at 25–90° C and one atmosphere. Geochim. Cosmochim. Acta, 37: 1563–1586.CrossRefGoogle Scholar
  93. Kaufman, A. (1971). U-series dating of Dead Sea basin carbonates. Geochim. Cosmochim. Acta, 35L: 1269 1281.Google Scholar
  94. Keller, W. D., and A. F. Frederickson. (1952). Role of plants and colloidal acids in the mechanism of weathering. Am. J. Sci., 250: 594–603.CrossRefGoogle Scholar
  95. King, C. R. (1948). Soda ash and salt cake in California. Calif. J. Mines Geol., 44: 189–200.Google Scholar
  96. Krauskopf, K. B. (1967). Introduction to Geochemistry. McGraw-Hill, New York, NY. 721 pp.Google Scholar
  97. Lafon, G. M. (1975). The calculation of chemical potentials in natural waters. Application to mixed chloride-sulfate. Pp. 97–111. In: T. M. Church (ed.), Marine Chemistry in the Coastal Environment. Am. Chem. Soc. Symposium Series 18.Google Scholar
  98. Lerman, A. (1967). Model of chemical evolution of a chloride lake-The Dead Sea. Geochim. Cosmochim. Acta, 31: 2309–2330.CrossRefGoogle Scholar
  99. Lerman, A. (1970). Chemical equilibria and evolution of chloride brines. Mineral. Soc. Am., Spec. Publ., 3: 291–306.Google Scholar
  100. Lerman, A., and A. Shatkay. (1968). Dead Sea brines: degree of halite saturation by electrode measurements. Earth Planet. Sci. Lett., 5: 63–66.CrossRefGoogle Scholar
  101. Livingston, D. A. (1963). Chemical composition of rivers and lakes: U.S. Geol. Surv. Prof. Paper 440-G. 64 pp.Google Scholar
  102. Loewengart, S. (1962). The geochemical evolution of the Dead Sea Basin. Res. Counc. Israel Bull., 11G: 85–96.Google Scholar
  103. Löffler, H. (1956). Ergebnisse der Österreichischen Iran Expedition 1949–50: Limnologische Untersuchungen an Iranischen Binnengewässern. Hydrobiology, 8: 1–252.CrossRefGoogle Scholar
  104. Lombardi, O. (1963). Observations on the distribution of chemical elements in the terrestrial saline deposits of Saline Valley California. U.S. Naval Ordnance Test Station, China Lake, Tech. Publ. 2916. 42 pp.Google Scholar
  105. Lustig, L. K. (1962). Clastic sedimentation in a bolson environment. Ph.D thesis, Harvard Univ. 102 pp.Google Scholar
  106. Maglione, G. (1970). La magadiite, silicate sodique de néoformation des faciès évaporitique du Kanem. Bull. Serv. Carte Geol. Als. Lorr., 23:3–4, 177–189.Google Scholar
  107. Maglione, G. (1974). Géochimie des évaporites et silicates néoformés en milieu continentale confiné. Thèse Univ. Paris VI. 331 pp.Google Scholar
  108. Maglione, G., and M. Servant. (1973). Signification des silicates de sodium et des cherts néoformés dans les variations hydrologiques et climatiques holocènes du bassin tchadien. C. R. Acad. Sci. Paris 277: 1721–1724.Google Scholar
  109. Mariner, R. H., and R. C. Surdam. (1970). Alkalinity and formation of zeolites in saline alkaline lakes. Science, 170: 977–980.PubMedCrossRefGoogle Scholar
  110. Mazor, E. (1962). Radon and radium content of some Israeli water sources and a hypothesis on underground reservoirs of brines, oils and gases in the Rift Valley. Geochim. Cosmochim. Acta, 26: 765–786.CrossRefGoogle Scholar
  111. Mazor, E., and F. Mero. (1969). Geochemical tracing of mineral and fresh water sources in the Lake Tiberias basin. Israel. J. Hydrol., 7: 276–317.CrossRefGoogle Scholar
  112. Mazor, E., E. Rosenthal, and J. Ekstein. (1969). Geochemical tracing of mineral water sources in the Southwestern Dead Sea Basin. Israel. J. Hydro/., 7: 246–275.Google Scholar
  113. McAllister, J. F. (1956). Geology of the Ubehebe Peak quadrangle. U.S. Geol. Surv. Map GQ 95.Google Scholar
  114. McGrew, P., and M. Casilliano. (1975). The geological history of Fossil Butte National Monument and Fossil Basin. U.S. Natl. Park Service Occasional Paper, 3: 1–37.Google Scholar
  115. Miller, J. P. (1961). Solutes in small streams draining single rock types, Sangre de Cristo Range, New Mexico. U.S. Geol. Surv. Water-Supply Paper 1535-F.Google Scholar
  116. Milton, C. (1971). Authigenic minerals of the Green River Formation. Wyoming Univ. Contr. Geol., 10: 57–63.Google Scholar
  117. Milton, C., and H. P. Eugster. (1959). Mineral assemblages of the Green River Formation. Pp. 118–150. In: P. H. Abelson (ed.), Researches in Geochemistry. John Wiley, New York, NY.Google Scholar
  118. Morrison, R. B. (1966). Predecessors of Great Salt Lake. Pp. 77–104. In: Wm. Lee Stokes (ed.), Guidebook to the Geology of Utah. Vol. 20. Utah Geol. Soc.Google Scholar
  119. Müler, G., G. Irion, and V. Förstner. (1972). Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59: 158–164.CrossRefGoogle Scholar
  120. Mundorff, J. C. (1971). Nonthermal springs of Utah. Utah.Geol. Mineral. Survey, Water Resources Bull. 16. 70 pp.Google Scholar
  121. Neev, D. (1962). Recent precipitation of calcium salts in the Dead Sea. Res. Counc. Israel Bull., 11G: 153–154.Google Scholar
  122. Neev, D., and K. O. Emery. (1967). The Dead Sea. Depositional processes and environments of evaporites. Israel Geol. Survey Bull., 41. 147 pp.Google Scholar
  123. Nesbitt, H. W. (1974). The study of some mineral-aqueous solution interactions. Ph.D. thesis, Baltimore, Johns Hopkins Univ. 173 pp.Google Scholar
  124. Nipkow, F. (1920). Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Zeitschr. Hydrol., 1: 100–122.Google Scholar
  125. O’Neil, J. R., and R. L. Hay. (1973). 180/160 ratios in cherts associated with the saline lake deposits of East Africa. Earth Planet. Sci. Lett., 19: 257–266.Google Scholar
  126. Peterson, M. N. A., G. S. Bien, and R. A. Berner. (1963). Radiocarbon studies of recent dolomite from Deep Springs Lake, California. J. Geophys. Res., 68: 6493–6505.Google Scholar
  127. Peterson, M. N. A., C. C. Von der Borch, and G. S. Bien. (1966). Growth of dolomite crystals. Am. J. Sci., 264: 257–272.CrossRefGoogle Scholar
  128. Pettijohn, F. J. (1975). Sedimentary Rocks. 3rd ed. Harper & Row, New York, NY. 628 pp.Google Scholar
  129. Phillips, K. N., and A. S. Van Denburgh. (1971). Hydrology and geochemistry of Abert, Summer and Goose Lakes, and other closed-basin lakes in South-central Oregon. U.S. Geol. Survey Prof. Paper 502B. 86 pp.Google Scholar
  130. Quinn, H. G. (1966). Biology of the Great Salt Lake. Pp. 2534. In: Wm. Lee Stokes (ed.), Guidebook to the Geology of Utah Vol. 20. Utah Geol. Soc.Google Scholar
  131. Rawson, D. S., and J. E. Moore. (1944). The saline lakes of Saskatchewan. Can. J. Res., Sect. D., 22: 141–201.CrossRefGoogle Scholar
  132. Ricci, J. E. (1951). The Phase Rule and Heterogeneous Equilibrium. Van Nostrand. 505 pp.Google Scholar
  133. Reilly, P. J., R. H. Wood, and R. A. Robinson. (1971). The prediction of osmotic and activity coefficients in mixed electrolyte solutions. J. Phys. Chem., 75: 1305.CrossRefGoogle Scholar
  134. Reite, O. B., G. M. O. Maloiy, and B. Aasehaug. (1974). pH, salinity and temperature tolerance of Lake Magadi tilapia. Nature, 247: 315.Google Scholar
  135. Roche, M. A. (1973). Traçage naturel salin et isotopique des eaux du système hydrologique du lac Tchad. Thesis, Univ. Paris VI. 385 pp.Google Scholar
  136. Rooney, T. P., B. F. Jones, and T. J. Neal. (1969). Magadiite from Alkali Lake, Oregon. Am. Mineral., 54: 1034–1043.Google Scholar
  137. Ryder, R. T., T. D. Fouch, and J. H. Elison. (1976). Early Tertiary sedimentation in the western Uinta basin, Utah. Bull. Geol. Soc. Am., 87: 496–512.CrossRefGoogle Scholar
  138. Sandberg, P. (1975). New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate sedimentology. Sedimentology, 22: 497–537.CrossRefGoogle Scholar
  139. Servant, M. (1973). Séquences continentales et variations climatiques. Evolution du bassin du Tchad au Cenozoique supérieur. Thesis, Univ. Paris VI. 348 pp.Google Scholar
  140. Shearman, D. J. (1970). Recent halite rock, Baja California, Mexico. Trans. Inst. Mining Metall. (Section B), 79: 155–162.Google Scholar
  141. Sheppard, R. A., and A. J. Gude, 3d. (1968). Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California. U.S. Geol. Survey Prof. Paper 597. 38 pp.Google Scholar
  142. Sheppard, R. A., and A. J. Gude, 3d. (1969). Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California. U.S. Geol. Survey Prof. Paper 634. 35 pp.Google Scholar
  143. Sheppard, R. A., and A. J. Gude, 3d. (1973). Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. U.S. Geol. Survey Prof. Paper 830. 36 pp.Google Scholar
  144. Sheppard, R. A., and A. J. Gude, 3d. (1974). Chert derived from magadiite in a lacustrine deposit near Rome, Malheur County, Oregon. J. Res. U.S. Geol. Surv., 2: 625–630.Google Scholar
  145. Sheppard, R. A., A. J. Gude, 3d., and R. L. Hay. (1970). Makatite, a new hydrous sodium silicate mineral from Lake Magadi, Kenya. Am. Mineral., 55: 358–366.Google Scholar
  146. Slack, K. V. (1967). Physical and chemical description of Birch Creek, a travertine depositing stream, Inyo County, California. U.S. Geol. Survey Prof. Paper 549 A. 19 pp.Google Scholar
  147. Smith, C. L. (1974). Chemical controls on weathering and trace element distribution at Teels Marsh, Nevada. Univ. Wyoming, Ph.D. thesis. 96 pp.Google Scholar
  148. Smith, C. L., and J. I. Dreyer. (1976). Controls on the chemistry of springs at Teels Marsh, Mineral Co. Nevada. Geochim. Cosmochim. Acta, 40: 1081–1093.CrossRefGoogle Scholar
  149. Smith, G. I. (In press). Subsurface stratigraphy and geochemistry of late Quaternary evaporites, Searles Lake, California. U.S. Geol. Survey Prof. Paper.Google Scholar
  150. Smith, G. I. and D. V. Haines. (1964). Character and distribution of nonelastic minerals in the Searles Lake evaporate deposit, California. U.S. Geol. Surv. Bull., 1181-P: 1–58.Google Scholar
  151. Smith, J. W., and C. Milton. (1966). Dawsonite in the Green River formation of Colorado. Econ. Geol., 61: 1029–1042.CrossRefGoogle Scholar
  152. Smith, J. W., and N. B. Young. (1969). Determination of dawsonite and nahcolite in Green River formation oil shale. U.S. Bureau Mines Report Invest. 7286.Google Scholar
  153. Smoot, J. P. (1976). Origin of the carbonate sediments in the Wilkins Peak Member, Green River formation (Eocene), Wyoming. Geol. Soc. Amer., Abstr. with Programs, 8, 6: 1113.Google Scholar
  154. Smoot, J. P. (1977). Sedimentology of a saline closed basin: The Wilkins Peak Member, Green River formation (Eocene) Wyoming. Ph.D. thesis, Johns Hopkins University, Baltimore, MD. 296 pp.Google Scholar
  155. Smoot, J. P. (In press). Origin of the carbonate sediments in the Wilkins Peak Member of the lacustrine Green River Formation (Eocene) Wyoming. Int. Assoc. Sedimentol. Spec. Publ.Google Scholar
  156. Stanley, K. O., and R. C. Surdam. (In press). Sedimentation on the front of Eocene Gilbert-type deltas, Washakie Basin, Wyoming, J. Sed. Petrol.Google Scholar
  157. Steen, V. C., and R. F. Fryxell. (1965). Mazama and Glacier Peak pumice glass: Uniformity of refractive index after weathering. Science, 150: 878–880.PubMedCrossRefGoogle Scholar
  158. Stoertz, G. E., and G. E. Ericksen. (1974). Geology of Salars in Northern Chile. U.S. Geol. Surv. Prof. Paper 811. 65 pp.Google Scholar
  159. Stoffers, P., and S. Holdship. (1975). Diagenesis of sediments in an alkaline lake: Lake Manyara, Tanzania. IXth Intern. Confr. Sediment., Nice.Google Scholar
  160. Stumm, W., and J. J. Morgan. (1970). Aquatic Chemistry. Wiley, New York, NY. 583 pp.Google Scholar
  161. Surdam, R. C., and H. P. Eugster. (1976). Mineral reactions in the sedimentary deposits of the Lake Magadi Region, Kenya. Bull. Geol. Soc. Am., 87: 1739–1752.CrossRefGoogle Scholar
  162. Surdam, R. C., H. P. Eugster, and R. H. Mariner. (1972). Magadi-type chert in Jurassic and Eocene to Pleistocene rocks, Wyoming. Bull. Geol. Soc. Am., 83: 2261–2266.CrossRefGoogle Scholar
  163. Surdam, R. C., and R. D. Parker. (1972). Authigenic aluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming. Geol. Soc. Am. Bull., 83: 689–700.CrossRefGoogle Scholar
  164. Surdam, R. C., and R. A. Sheppard. (In press). Zeolites in saline, alkaline-lake deposits.Google Scholar
  165. Surdam, R. C., and K. O. Stanley. (1976). Evolution of an ancient playa-lake complex. Geol. Soc. Amer., Abstracts with Programs, 8, 6: 1130.Google Scholar
  166. Surdam, R. C., and C. A. Wolfbauer. (1975). Green River formation, Wyoming: A playa-lake complex. Bull. Geol. Soc. Am., 86: 335–345.CrossRefGoogle Scholar
  167. Talling, J. F., and I. B. Talling. (1965). The chemical composition of African lake waters. Int. Rev. Hydrobiol., 50: 421–463.CrossRefGoogle Scholar
  168. Tardy, Y., C. Cheverry, and B. Fritz. (1974). Néoformation d’une argile magnésienne dans les dépressions interdunaires du lac Tchad: Application aux domaines et stabilité des phyllosilicates alumineux, magnésiens et ferrifères. C.R. Acad. Sci., Sér. D, 278: 1999–2002.Google Scholar
  169. Tomkins, R. V. (1954). Natural sodium sulfate in Saskatchewan. (2nd ed.). Saskatchewan Dept. Mineral Resources, Indust. Minerals Research Board Rept., No. 6. 71 pp.Google Scholar
  170. Trudinger, P. A, I B Lambert, and G. W. Skyring. (1972). Biogenic sulfide ores: A feasibility study. Econ. Geol., 67: 1114.CrossRefGoogle Scholar
  171. Tucker, W. B. (1926). Inyo County. Calif. Min. Bur. Rep., 22: 453–530.Google Scholar
  172. Ver Planck, W. E. (1958). Salt in California. Cal. Dept. Nat. Res. Mines Bull., 175. 168 pp.Google Scholar
  173. Valyashko, M. G. (1972). Playa lakes-a necessary stage in the development of a salt-bearing basin. Pp. 41–51. In: G. Richter-Bernburg (ed.), Geology of Saline Deposits. UNESCO, Paris.Google Scholar
  174. Weiler, Y., E. Sass, and I. Zak. (1974). Halite oolites and ripples in the Dead Sea, Israel. Sedimentology, 21: 623–632.CrossRefGoogle Scholar
  175. Whelan, J. A. (1973). Great Salt Lake, Utah: Chemical and physical variations of the brine, 1966–1972. Utah Geol. Mineral. Survey, Water Resources Bull. 17. 24 pp.Google Scholar
  176. Whelan, J. A., and C. A. Petersen. (1975). Great Salt Lake, Utah: Chemical and physical variations of the brine, water-year 1973. Utah Geol. Mineral. Survey, Water Resources Bull. 20. 29 pp.Google Scholar
  177. White, D. E., J. G. Hem, and G. A. Waring. (1963). Chemical composition of surface waters. U.S. Geol. Surv. Prof. Paper 440-L. 67 pp.Google Scholar
  178. Whitehead, H. C., and J. H. Feth. (1961). Recent chemical analyses of waters from several closed-basin lakes and their tributaries in the western United States. Geol. Soc. Am. Bull., 72: 1421–1426.CrossRefGoogle Scholar
  179. Williams, D. E., and N. T. Coleman. (1950). Cation exchange properties of plant root surfaces. Plant Soil, 2: 243–256.CrossRefGoogle Scholar
  180. Wolfbauer, C. A. (1971). Geologic framework of the Green River Formation in Wyoming. Wyoming Univ. Contr. Geol., 10: 3–8.Google Scholar
  181. Wood, J. R. (1975). Thermodynamics of brine-salt equilibria I. The systems NaCI-KC1-MgC12-CaC12–H2O and NaCl-MgSO4–H2O at 25°C. Geochim. Cosmochim. Acta, 39: 1147–1163.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Hans P. Eugster
  • Lawrence A. Hardie

There are no affiliations available

Personalised recommendations