Advertisement

Lakes pp 127-152 | Cite as

Organic Compounds in Lake Sediments

  • M. A. Barnes
  • W. C. Barnes

Abstract

Although broad classes of natural organic compounds have been isolated from lake sediments for several decades, the identification of specific compounds is largely a product of the past 15 years and has paralleled the development of modern analytical techniques such as combined gas chromatography-mass spectrometry. Although the identification of optical and geometric isomers needs more study, much progress has already been made in relating sediment compounds to precursor organisms and to microbial processes in the water column and the sediment. The mechanisms and rates of microbial lysis and decomposition of phytoplankton and higher plants are now well known. Chemoheterotrophic microorganisms normally decompose algae and extracellular organic compounds as sources of required elements and energy but seldom use the compounds themselves in unaltered form (Golterman, 1975). Thus, with the exceptions of the vitamins and some nitrogenous bases, sediment organic compounds are largely either of microbial origin or have been derived from phytoplankton and zooplankton remains and feces which have survived microbial attack, or from littoral and terrestrial sources. The relative proportions of organic matter derived from these sources is largely a function of lake morphology and productivity. Small, shallow lakes may have much of their organic matter derived from littoral sources (Wetzel, 1975), whereas larger and deeper lakes, especially fjord lakes, have a much larger input of autochthonous planktonic organisms. Less productive lakes appear to have much of their sediment organic matter derived from allochthonous sources (Mackereth, 1966; Brunskill et al., 1971), whereas lakes of high productivity have sediment organic matter derived largely from within the lakes themselves (Gorham, 1960; Gorham, et al. 1974). Sanger and Gorham (1970) and Gorham and Sanger (1975) concluded from their studies of pigments that productive Minnesota lakes have sediment organic matter which is largely autochthonous.

Keywords

Humic Acid Lake Sediment Phytanic Acid Unsaturated Acid Hydroxy Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballio, A., and S. Barcellona. (1971). Identification of 10-methyl branched fatty acids in Microhispora parva by combined gas chromatography—mass spectrometry. Gazz. Chim. Ital., 101: 635–636.Google Scholar
  2. Barbier, M. (1970). Chemistry and biochemistry of pollens. Pp. 1–34. In: L. Reinhold and Y. Liwschitz (eds.), Progress in Phytochemistry. Vol. 2. Interscience, London.Google Scholar
  3. Barnes, M. A., and W. C. Barnes. (1978). Manuscript in preparation.Google Scholar
  4. Berkaloff, C., and J. C. Kader. (1975). Variations of the lipid composition during the formation of cysts in the green alga Protosiphon botryoides. Phytochemistry, 14: 2353–2355.Google Scholar
  5. Bird, C. W., and J. M. Lynch. (1974). Formation of hydrocarbons by micro-organisms. Chem. Soc. Rev., 3: 309–328.Google Scholar
  6. Bird, C. W., and P. M. Molton. (1972). The production of fatty acids from hydrocarbons by micro-organisms. Pp. 125–169. In: F. D. Gunstone (ed.), Topics in Lipid Chemistry. Vol. 3. Paul Elek, London.Google Scholar
  7. Bird, C. W., J. M. Lynch, S. J. Pirt, and W. W. Reid. (1971a). The identification of hop-22(29)-ene in prokaryotic organisms. Tetrahedron Lett., 34: 3189–3190.Google Scholar
  8. Bird, C. W., J. M. Lynch, S. J. Pirt, W. W. Reid, C. J. W. Brooks, and B. S. Middleditch. (1971b). Steroids and squalene in Methylococcus capsulatus grown on methane. Nature, 230: 473–474.PubMedGoogle Scholar
  9. Blumer, M., and J. Sass. (1972). Oil pollution: persistence and degradation of spilled fuel oil. Science, 176: 1120–1122.PubMedGoogle Scholar
  10. Boon, J. J., J. W. de Leeuw, and P. A. Schenck. (1975a). Organic geochemistry of Walvis Bay diatomaceous ooze-I. Occurrence and significance of the fatty acids. Geochim. Cosmochim. Acta, 39: 1559–1565.Google Scholar
  11. Boon, J. J., F. de Lange, P. J. W. Schuyl, J. W. de Leeuw, and P. A. Schenck. (1975b). Organic geochemistry of Walvis Bay diatomaceous ooze-II. Occurrence and significance of the hydroxy fatty acids. Preprint of paper presented at 7th Meeting on Organic Geochemistry, Madrid.Google Scholar
  12. Boon, J. J., W. I. C. Rijpstra, J. W. de Leeuw, and P. A. Schenck. (1975c). Phytenic acid in sediments. Nature, 258: 414–416.Google Scholar
  13. Braids, O. C., and R. H. Miller. (1975). Fats, waxes, and resins in soil. Pp. 343–368. In: J. Gieseking (ed.), Soil Components. Vol. 1. Springer-Verlag, New York, NY.Google Scholar
  14. Brooks, P. W., and J. R. Maxwell. (1974). Early stage fate of phytol in a recently-deposited lacustrine sediment. Pp. 977–991. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973. Éditions Technip, Paris.Google Scholar
  15. Brooks, P. W., G. Eglinton, S. J. Gaskell, D. J. McHugh, J. R. Maxwell, and R. P. Philp. (1976). Lipids of Recent sediments, part I: Straight-chain hydrocarbons and carboxylic acids of some temperate lacustrine and subtropical lagoonalltidal flat sediments. Chem. Geol., 18: 21–38.Google Scholar
  16. Brown, S. R. (1969). Paleolimnological evidence from fossil pigments. Mitt. Int. Verein. Theor. Angew. Limnol., 17: 95–103.Google Scholar
  17. Brunskill, G. J., D. Povoledo, B. W. Graham, and M. P. Stainton. (1971). Chemistry of surficial sediments of sixteen lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can., 28: 277–294.Google Scholar
  18. Canter, H. M., and J. W. G. Lund. (1948). Studies on plankton parasites. I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytol., 47: 238–261.Google Scholar
  19. Canter, H. M., and J. W. G. Lund. (1969). The parasitism of planktonic desmids by fungi. Osterr. Bot. Z., 116: 351–377.Google Scholar
  20. Castillo, J. B. del, C. J. W. Brooks, R. C. Cambie, G. Eglinton, R. J. Hamilton, and P. Pellitt. (1967). The taxonomic distribution of some hydrocarbons in gymnosperms. Phytochemistry, 6: 391–398.Google Scholar
  21. Cho, K. Y., and M. R. J. Salton. (1966). Fatty acid composition of bacterial membrane and wall lipids. Biochim. Biophys. Acta, 116: 73–79.PubMedGoogle Scholar
  22. Christie, W. W. (1970). Cyclopropane and cyclopropene fatty acids. Pp. 1–49. In: F. D. Gunstone (ed.), Topics in Lipid Chemistry. Logos, London.Google Scholar
  23. Chróst, R. J. (1975). Inhibitors produced by algae as an ecological factor affecting bacteria in water. II. Antibacterial activity of algae during blooms. Acta Microbiol. Pol. (B), 7: 167–176.Google Scholar
  24. Clark, F. E., and K. H. Tan. (1969). Identification of a polysaccharide ester linkage in humic acid. Soil Biol. Biochem., 1: 75–81.Google Scholar
  25. Cox, R. E., J. R. Maxwell, G. Eglinton, C. T. Pillinger, R. G. Ackman, and S. N. Hooper. (1970). The geological fate of chlorophyll: the absolute stereochemistries of a series of acyclic isoprenoid acids in a 50 million year old lacustrine sediment. Chem. Commun., 1639–1641.Google Scholar
  26. Cranwell, P. A. (1973a). Branched chain and cyclopropanoid acids in a recent sediment. Chem. Geol., 11: 307–313.Google Scholar
  27. Cranwell, P. A. (1973b). Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol., 3: 259–265.Google Scholar
  28. Cranwell, P. A. (1974). Monocarboxylic acids in lake sediments: indicators, derived from terrestrial and aquatic biota, of paleoenvironmental trophic levels. Chem. Geol., 14: 1–14.Google Scholar
  29. Cranwell, P. A. (1975). Environmental organic chemistry of rivers and lakes, both water and sediment. Pp. 22–54. In: G. Eglinton (ed.), Environmental Chemistry. Vol. 1. Chemical Society, London.Google Scholar
  30. Cranwell, P. A. (1976a). Organic geochemistry of lake sediments. Pp. 75–88. In: J. O. Nriagu (ed.), Environmental Biogeochemistry. Vol. 1. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  31. Cranwell, P. A. (1976b). Decomposition of aquatic biota and sediment formation: organic compounds in detritus resulting from microbial attact on the alga Ceratium hirundinella. Freshwater Biol., 6: 41–48.Google Scholar
  32. Daft, M. J., S. B. McCord, and W. D. P. Stewart. (1975). Ecological studies on algal-lysing bacteria in fresh waters. Freshwater Biol., 5: 577–596.Google Scholar
  33. Daley, R. J. (1973). Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects. Arch. Hydrobiol., 72: 409–439.Google Scholar
  34. Daley, R. J., and S. R. Brown. (1973). Experimental characterization of lacustrine chlorophyll diagenesis. I. Physiological and environmental effects. Arch. Hydrobiol., 72: 277–304.Google Scholar
  35. Degens, E. T., R. P. von Herzen, H.-K. Wong, W. G. Denser, and H. W. Jannasch. (1973). Lake Kivu: Structure, chemistry and biology of an East African rift lake. Geol. Rundsch., 62: 245–277.Google Scholar
  36. Dorsselaer, A. van, A. Ensminger, C. Spyckerelle, M. Dastillung, O. Sieskind, P. Arpino, P. Albrecht, G. Ourisson, P. W. Brooks, S. J. Gaskell, B. J. Kimble, R. P. Philp, J. R. Maxwell, and G. Eglinton. (1974). Degraded and extended hopane derivatives (C27 to C35) as ubiquitous geochemical markers. Tetrahedron Lett., 14: 1349–1352.Google Scholar
  37. Eglinton, G. (1973). Chemical fossils: a combined organic geochemical and environmental approach. Pure Appl. Chem. 34: 611–631.Google Scholar
  38. Eglinton, G., and R. J. Hamilton. (1967). Leaf epicuticular waxes. Science, 156: 1322–1335.PubMedGoogle Scholar
  39. Eglinton, G., and D. H. Hunneman. (1968). Gas chromatographic-mass spectrometric studies of long chain hydroxy acids-I. The constituent cutin acids of apple cuticle. Phytochemistry, 7: 313–322.Google Scholar
  40. Eglinton, G., and M. T. J. Murphy. (1969). Organic Geochemistry: Methods and Results. Springer-Verlag, New York, NY.Google Scholar
  41. Eglinton, G., D. H. Hunneman, and K. Douraghi-Zadeh. (1968). Gas chromatographic-mass spectrometric studies of long chain hydroxy acids-II. The hydroxy acids and fatty acids of a 500-year-old lacustrine sediment. Tetrahedron, 24: 5929–5941.Google Scholar
  42. Eglinton, G., J. R. Maxwell, and R. P. Philp. (1974). Organic geochemistry of sediments from contemporary aquatic environments. Pp. 941–961. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973. Editions Technip, Paris.Google Scholar
  43. Ensminger, A., A. van Dorsselaer, C. Spyckerelle, P. Albrecht, and G. Ourisson. (1974). Pentacyclic triterpenes of the hopane type as ubiquitous geochemical markers: origin and significance. Pp. 245–260. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973. Éditions Technip, Paris.Google Scholar
  44. Erwin, J. (1973). Comparative biochemistry of fatty acids in eukaryotic microorganisms. Pp. 41–143. In: J. A. Erwin (ed.), Lipids and Biomembranes of Eukaryotic Microorganisms. Academic Press, New York, NY.Google Scholar
  45. Farrington, J. W., and P. A. Meyers. (1975). Hydrocarbons in the marine environment. Pp. 109–136. In: G. Eglinton (ed.), Environmental Chemistry. Vol. 1. Chemical Society, London.Google Scholar
  46. Farrington, J. W., S. M. Henrichs, and R. Anderson. (1977). Fatty acids and Pb-210 geochronology of a sediment core from Buzzards Bay, Massachusetts. Geochim. Cosmochim. Acta, 41: 289–296.Google Scholar
  47. Fleischer, S. (1972). Sugars in the sediments of Lake Trummen and reference lakes. Arch. Hydrobiol., 70: 392–412.Google Scholar
  48. Förster, H. J., K. Biemann, W. G. Haigh, N. H. Tattrie, and J. R. Colvin. (1973). The structure of novel C35 penta-cyclic terpenes from Acetobacter xylinum. Biochem. J., 135: 133–143.Google Scholar
  49. Fuji, N. (1974). Palynological investigations on 12-meter and 200-meter core samples of Lake Biwa in central Japan. Pp. 227–235. In: S. Horie (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene. Otsu Hydrobiol. Station, Kyoto Univ., Otsu, Japan.Google Scholar
  50. Fuji, N., and S. Horie. (1972). Palynological study on 200 meters core sample of Lake Biwa in Japan. Proc. Japan Acad., 48: 500–504.Google Scholar
  51. Gaskell, S. J., and G. Eglinton. (1974). Short-term diagenesis of sterols. Pp. 963–976. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973, Editions Technip, Paris.Google Scholar
  52. Gaskell, S. J., and G. Eglinton. (1975). Rapid hydrogenation of sterols in a contemporary lacustrine sediment. Nature, 254: 209–211.Google Scholar
  53. Gaskell, S. J., and G. Eglinton. (1976). Sterols of a contemporary lacustrine sediment. Geochim. Gosmochim. Acta, 40: 1221–1228.Google Scholar
  54. Gelpi, E., H. Schneider, J. Mann, and J. Oro. (1970). Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9: 603–612.Google Scholar
  55. Gieseking, J. (ed.). (1975). Soil Components. Vol. 1. Springer-Verlag, New York, NY.Google Scholar
  56. Giger, W., M. Reinhard, C. Schaffner, and W. Stumm. (1974). Petroleum-derived and indigenous hydrocarbons in recent sediments of Lake Zug, Switzerland. Envir. Sci. Technol., 8: 454–455.Google Scholar
  57. Gjessing, E. T. (1976). Physical and Chemical Characteristics of Aquatic Humus. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  58. Golterman, H. L. (1975). Physiological Limnology. Elsevier, Amsterdam.Google Scholar
  59. Goodwin, T. W. (1973). Comparative biochemistry of sterols in eukaryotic microorganisms. Pp. 1–40. In: J. A. Erwin (ed.), Lipids and Biomembranes of Eukaryotic Microorganisms. Academic Press, New York, NY.Google Scholar
  60. Goodwin, T. W. (1974). Sterols. Pp. 266–280. In: W. D. P. Stewart (ed.), Algal Physiology and Biochemistry (Bot. Monogr., Vol. 10). Univ. of California Press, Berkeley, CA.Google Scholar
  61. Gorham, E. (1960). Chlorophyll derivatives in surface muds from the English Lakes. Limnol. Oceanogr., 5: 29–33.Google Scholar
  62. Gorham, E., and J. E. Sanger. (1975). Fossil pigments in Minnesota lake sediments and their bearing upon the balance between terrestrial and aquatic inputs to sedimentary organic matter. Verh. Int. Verein. Theor. Angew. Limnol., 19: 2267–2273.Google Scholar
  63. Gorham, E., and J. E. Sanger. (1976) Fossilized pigments as stratigraphie indicators of cultural eutrophication in Shagawa Lake, northeastern Minnesota. Geol. Soc. Am. Bull., 87: 1638–1642.Google Scholar
  64. Gorham, E., J. W. G. Lund, J. E. Sanger, and W. E. Dean, Jr. (1974). Some relationships between algal standing crop, water chemistry, and sediment chemistry in the English Lakes Limnol. Oceanogr., 19: 601–617.Google Scholar
  65. Griffiths, M., and W. T. Edmondson. (1975). Burial of oscillaxanthin in the sediment of Lake Washington. Limnol. Oceanogr., 20: 945–952.Google Scholar
  66. Hamilton, S., and R. J. Hamilton. (1972). Plant waxes. Pp. 199–269. In: F. D. Gunstone (ed.), Topics in Lipid Chemistry. Vol. 3. Wiley, New York, NY.Google Scholar
  67. Han, J., E. D. McCarthy, W. van Hoeven, M. Calvin, and W. H. Bradley. (1968). Organic geochemical studies, II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proc. Nat. Acad. Sci. USA, 59: 29–33.PubMedGoogle Scholar
  68. Handa, N. (1972). Organogeochemical studies of a 200 meters core sample from Lake Biwa: The determination of carbohydrate and organic carbon. Proc. Japan Acad., 48: 510–515.Google Scholar
  69. Handa, N. (1974). Geochemical studies on organic materials in a 200-meter core from Lake Biwa. Pp. 184–193. In: S. Hone (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene. Otsu Hydrobiol. Station, Kyoto Univ., Otsu, Japan.Google Scholar
  70. Handa, N. (1975). Organogeochemical studies of a 200-meter core sample from Lake Biwa. III. The determination of chlorophyll derivatives and carotenoids. Proc. Japan Acad., 51: 442–446.Google Scholar
  71. Handa, N., and K. Mizuno. (1973). Carbohydrates from lake sediments. Geochem. J., 7: 215–230.Google Scholar
  72. Henderson, W., W. E. Reed, and G. Steel. (1972). The origin and incorporation of organic molecules in sediments as elucidated by studies of the sedimentary sequence from a residual Pleistocene lake. Pp. 335–352. In: H. R. von Gaertner and H. Wehner (eds.), Advances in Organic Geochemistry, 1971. Pergamon, Oxford.Google Scholar
  73. Horie, S. (1974). Paleolimnology of Lake Biwa and the Japanese Pleistocene. Otsu Hydrobiol. Station, Kyoto Univ., Otsu, Japan.Google Scholar
  74. Hunneman, D. H., and G. Eglinton. (1972). The constituent acids of gymnosperm cutins. Phytochemistry, 11: 1989–2001.Google Scholar
  75. Ikan, R., M. J. Baedecker, and I. R. Kaplan. (1975a). Thermal alteration experiments on organic matter in recent marine sediment-II. Isoprenoids. Geochim. Cosmochim. Acta, 39: 187–194.Google Scholar
  76. Ikan, R., M. J. Baedecker, and I. R. Kaplan. (1975b). Thermal alteration experiments on organic matter in recent marine sediment-III. Aliphatic and steroidal alcohols. Geochim. Cosmochim. Acta, 39: 195–203.Google Scholar
  77. Ishiwatari, R. (1975). Chemical nature of sedimentary humic acids. Pp. 87–107. In: D. Povoledo and H. L. Golterman (eds.), Humic Substances: Their Structure and Function in the Biosphere. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  78. Ishiwatari, R., and T. Hanya. (1973). Organic geochemistry of a 200-meter core sample from Lake Biwa. I. Identification of fatty acids by combined gas chromatography-mass spectrometry. Proc. Japan Acad., 49: 731–736.Google Scholar
  79. Ishiwatari, R., and T. Hanya. (1974). Gas chromatographic-mass spectrometric identification of organic compounds in a river water. Pp. 1051–1065. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973. Éditions Technip, Paris.Google Scholar
  80. Ishiwatari, R., and T. Hanya. (1975). Organic geochemistry of a 200-meter core sample from Lake Biwa. II. Vertical distribution of mono-and di-carboxylic acids and poly-nuclear aromatic hydrocarbons. Proc. Japan Acad., 51: 436–441.Google Scholar
  81. Jackson, L. L., and G. L. Baker, (1970). Cuticular lipids of insects. Lipids, 5: 239–246.Google Scholar
  82. Johns, R. B. and O. M. Onder. (1975). Biological diagenesis: dicarboxylic acids in recent sediments. Geochim. Cosmochim. Acta, 39: 129–136.Google Scholar
  83. Johnson, R. W., and J. A. Calder. (1973). Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment. Geochim. Cosmochim. Acta, 37: 1943–1955.Google Scholar
  84. Kaneda, T. (1967). Fatty acids in the genus Bacillus. I. Isoand anteiso-fatty acids as characteristic constituents of lipids in 10 species. J. Bacteriol., 93: 894–903.PubMedGoogle Scholar
  85. Kaplan, I. R., and M. J. Baedecker. (1970). Biological productivity in the Dead Sea. Part II: Evidence for phosphatidyl glycerophosphate lipid in sediment. Israel J. Chem., 8: 529–533.Google Scholar
  86. Kaplan, I. R., and A. Friedman. (1970). Biological productivity in the Dead Sea. Part I: Microorganisms in the water column. Israel J. Chem., 8: 513–528.Google Scholar
  87. Kates, M., and B. E. Volcani. (1966). Lipid components of diatoms. Biochim. Biophys. Acta, 116: 264–278.PubMedGoogle Scholar
  88. Kates, M., L. S. Yengoyan, and P. S. Sastry. (1965). A diether analog of phosphatidyl glycerophosphate in Halobacterium cutirubrum. Biochim. Biophys. Acta, 98: 252–268.Google Scholar
  89. Keeney, D. R., J. G. Konrad, and G. Chesters. (1970). Nitrogen distribution in some Wisconsin lake sediments J. Water Poll. Control Fed., 42: 411–417.Google Scholar
  90. Kemp, A. L. W., and A. Mudrochova. (1973). The distribution and nature of amino acids and other nitrogen-containing compounds in Lake Ontario surface sediments. Geochim. Cosmochim. Acta, 37: 2191–2206.Google Scholar
  91. Kemp, A. L. W., C. B. J. Gray, and A. Mudrochova. (1972). Changes in C, N, P, and S in the last 140 years in three cores from Lakes Ontario, Erie, and Huron. Pp. 251279. In: H. E. Allen and J. R. Kramer (eds.), Nutrients in Natural Waters. Wiley, New York, NY.Google Scholar
  92. Knights, B. A., A. C. Brown, and E. Conway. (1970). Hydrocarbons from the green form of the freshwater alga Botryococcus braunii. Phytochemistry, 9: 1317–1324.Google Scholar
  93. Kolattukudy, P. E. (1975). Biochemistry of cutin, suberin and waxes, the lipid barriers on plants. Pp. 203–246. In: T. Gaillard and E. I. Mercer (eds.), Recent Advances in the Chemistry and Biochemistry of Plant Lipids. Academic Press, New York, NY.Google Scholar
  94. Kolattukudy, P. E., and T. J. Walton. (1972). The biochemistry of plant cuticular lipids.. Pp. 121–175. In: R. T. Holman (ed.), Progress in the Chemistry of Fats and Other Lipids. Vol. 13. Pergamon, Oxford.Google Scholar
  95. Kudryavtsev, V. M. (1975). Dynamics of the decomposition of tagged algae by bacteria. Microbiology, 43: 767–771.Google Scholar
  96. Leeuw, J. W. de, V. A. Correia, and P. A. Schenck. (1974). On the decomposition of phytol under simulated geologi- cal conditions and in the top-layer of natural sediments. Pp. 993–1004. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973. Éditions Technip, Paris.Google Scholar
  97. Leeuw, J. W. de, B. R. Simoneit, J. J. Boon, W. I. C. Rijpstra, F. de Lange, J. C. W. van der Leeden, V. A. Correia, A. L. Burlingame, and P. A. Schenck. (1975). Phytol derived compounds in the geosphere. Preprint of paper presented at 7th Meeting on Organic Geochemistry, Madrid.Google Scholar
  98. Lenfant, M., M. F. Lecompte, and G. Farrugia. (1970). Identification des stérols de Physarum polycephalum. Phytochemistry, 9: 2529–2535.Google Scholar
  99. Lough, A. K. (1973). The chemistry and biochemistry of phytanic, pristanic and related acids. Pp. 5–48. In: R. T. Holman (ed.), Progress in the Chemistry of Fats and other Lipids. Vol. 14. Pergamon, London.Google Scholar
  100. Lowe, L. E. (1978). Carbohydrates in soil. Pp. 65–93. In: M. Schnitzer and S. U. Kahn (eds.), Soil Organic Matter. Elsevier, Amsterdam.Google Scholar
  101. Lytle, T. F., and J. R. Sever. (1973). Hydrocarbons and fatty acids of Lycopodium. Phytochemistry, 12: 623–629.Google Scholar
  102. Lytle, T. F., J. S. Lytle, and A. Caruso. (1976). Hydrocarbons and fatty acids of ferns. Phytochemistry, 15: 965–970.Google Scholar
  103. Mackereth, F. J. H. (1966). Some chemical observations on post-glacial lake sediments. Phil. Trans. Roy. Soc. London (Ser. B), 250: 165–213.Google Scholar
  104. Matsuda, H., and T. Koyama. (1977). Positional isomer composition of monounsaturated fatty acids from a lacustrine sediment. Geochim. Cosmochim. Acta, 41: 341–345.Google Scholar
  105. Matsuyama, M. (1973). Organic substances in sediment and settling matter during Spring in a meromictic Lake Suigetsu. J. Oceanogr. Soc. Japan, 29: 53–60.Google Scholar
  106. Maxwell, J. R., R. E. Cox, G. Eglinton, C. T. Pillinger, R. G. Ackman, and S. N. Hooper. (1973). Stereochemical studies of acyclic isoprenoid compounds-II. The role of chlorophyll in the derivation of isoprenoid-type acids in a lacustrine sediment. Geochim. Cosmochim. Acta, 37: 297–313.Google Scholar
  107. Maxwell, J. R., C. T. Pillinger, and G. Eglinton. (1971). Organic geochemistry. Quart. Rev., 25: 571–628.Google Scholar
  108. Mazliak, P. (1968). Chemistry of plant cuticles. Pp. 49–111.Google Scholar
  109. In: L. Reinhold and Y. Liwschitz (eds.), Progress in Phytochemistry. Vol. 1. Interscience, London.Google Scholar
  110. Meyers, P. A., and J. G. Quinn. (1973). Factors affecting the association of fatty acids with mineral particles in seawater. Geochim. Cosmochim. Acta, 37: 1745–1759.Google Scholar
  111. Meyers, P. A., N. Takeuchi, and R. A. Bourbonniere. (1976). Fatty acids and hydrocarbons in Lake Huron sediments Geol. Soc. Am. Absts., 8: 1010–1011.Google Scholar
  112. Mize, C. E., J. Avigan, D. Steinberg, R. C. Pittman, H. M. Fales, and G. W. A. Milne. (1969). A major pathway for the mammalian oxidative degradation of phytanic acid. Biochim. Biophys. Acta, 176: 720–739.PubMedGoogle Scholar
  113. Mori, S. (1974). Diatom succession in a core from Lake Biwa. Pp. 247–254. In: S. Horie (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene. Otsu Hydrobiol. Station, Kyoto Univ., Otsu, Japan.Google Scholar
  114. Morrison, R. I. (1969). Soil lipids. Pp. 558–575. In: G. Eglinton and R. T. J. Murphy (eds.), Organic Geochemistry: Methods and Results. Springer-Verlag, New York, NY.Google Scholar
  115. Nishimoto, S. (1974). A chemotaxonomic study of n-alkanes in aquatic plants. J. Sci. Hiroshima Univ. Ser. A, 38: 159–163.Google Scholar
  116. Nishimura, M., and T. Koyama. (1976). Stenols and stanols in lake sediments and diatoms. Chem. Geol., 17: 229–239.Google Scholar
  117. Nissenbaum, A. (1975). The microbiology and biogeochemis- try of the Dead Sea. Microbial Ecol., 2: 139–161.Google Scholar
  118. Nissenbaum, A., M. J. Baedecker, and I. R. Kaplan. (1972). Organic geochemistry of Dead Sea sediments. Geochim. Cosmochim. Acta, 36: 709–727.Google Scholar
  119. Nriagu, J. O. (ed.). (1976). Environmental Biogeochemistry. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  120. Oehler, J. H. (1976). Experimental studies in Precambrian paleontology: structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert. Geol. Soc. Am. Bull., 87: 117–129.Google Scholar
  121. Ogura, K. (1974). Information of sterols in a core sample. Pp. 194–201. In: S. Horie (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene.Google Scholar
  122. Ogura, K., and T. Hanya. (1973). The cholestanol-cholesterol ratio in a 200-meter core sample of Lake Biwa. Proc. Japan Acad., 49: 201–204.Google Scholar
  123. Oliver, J. D., and R. R. Colwell. (1973). Extractable lipids of gram-negative marine bacteria: fatty-acid composition. Int. J. Sys. Bacteriol., 23: 442–458.Google Scholar
  124. Patton, S., and A. A. Benson. (1966). Phytol metabolism in the bovine. Biochim. Biophys. Acta, 125: 22–32.PubMedGoogle Scholar
  125. Philp, R. P., and M. Calvin. (1976). Possible origin for insoluble organic (kerogen) debris in sediments from insoluble cell-wall materials of algae and bacteria. Nature, 262: 134–136.Google Scholar
  126. Philp, R. P., J. R. Maxwell, and G. Eglinton. (1976). Environmental organic geochemistry of aquatic sediments. Sci. Prog., 63: 521–545.Google Scholar
  127. Polacheck, J. W., B. E. Tropp, J. H. Law, and J. A. McCloskey. (1966). Biosynthesis of cyclopropane compounds. VIII. The conversion of oleate to dihydrosterculate. J. Biol. Chem., 241: 3362–3364.PubMedGoogle Scholar
  128. Povoledo, D., and H. L. Golterman. (eds.). (1975). Humic Substances: Their Structure and Function in the Biosphere. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  129. Povoledo, D., D. Murray, and M. Pitze. (1975). Pigments and lipids in the humic acids of some Canadian lake sediments. Pp. 233–258. In: D. Povoledo and H. L. Golterman (eds.), Humic Substances: Their Structure and Function in the Biosphere. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  130. Powers, C. F., W. D. Sanville, and F. S. Stay. (1976). Aquatic sediments. J. Water Poll. Control Fed., 48: 1433–1439.Google Scholar
  131. Reed, W. (1977). Biogeochemistry of Mono Lake, California. Geochim. Cosmochim. Acta, 41: 1231–1245.Google Scholar
  132. Rhead, M. M., G. Eglinton, G. H. Draffan, and P. J. England. (1971). Conversion of oleic acid to saturated fatty acids in Severn Estuary sediments. Nature (London), 232: 327–330.Google Scholar
  133. Rhead, M. M., G. Eglinton, and P. J. England. (1972). Products of the short-term diagenesis of oleic acid in an estuarine sediment. Pp. 323–333. In: H. R. von Gaertner and H. Wehner (eds.), Advances in Organic Geochemistry, 1971. Pergamon, Oxford.Google Scholar
  134. Rijpstra, W. I. C., J. W. de Leeuw, and P. A. Schenck. (1976). The action of borontrifluoride-methanol on isoprenoid alcohols. Geochim. Cosmochim. Acta, 40: 1289–1290.Google Scholar
  135. Rogers, M. A. (1965). Carbohydrates in aquatic plants and associated sediments from two Minnesota lakes. Geochim. Cosmochim. Acta, 29: 183–200.Google Scholar
  136. Sanger, J. E., and E. Gorham. (1970). The diversity of pigments in lake sediments and its ecological significance. Limnol. Oceanogr., 15: 59–69.Google Scholar
  137. Schneider, H., E. Gelpi, E. O. Bennett, J. Oro (1970). Fatty acids of geochemical significance in microscopic algae, Phytochemistry, 9: 613–617.Google Scholar
  138. Schnitzer, M. (1975). Chemical, spectroscopic, and thermal methods for the classification and characterization of humic substances. Pp. 293–310. In: D. Povoledo and H. L. Golterman (eds.), Humic Substances: Their Structure and Function in the Biosphere. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  139. Schwendinger, R. B., and J. G. Erdman (1964). Sterols in recent aquatic sediments. Science, 144: 1575–1576.PubMedGoogle Scholar
  140. Simoneit, B. R. T., L. A. Clews, C. D. Watts, and J. R. Maxwell. (1975). Stereochemical studies of acyclic isoprenoid compounds-V. Oxidation products of Green River Formation oil shale kerogen. Geochim. Cosmochim. Acta, 39: 1143–1145.Google Scholar
  141. Singer, P. C. (ed.). (1973). Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  142. Stockner, J. G., and J. W. G. Lund. (1970). Live algae in postglacial lake deposits. Limnol. Oceanogr., 15: 41–58.Google Scholar
  143. Swain, F. M. (1970). Non-marine Organic Geochemistry. Cambridge Univ. Press, Cambridge.Google Scholar
  144. Swetland, P. J., and J. F. Wehmiller. (1975). Lipid geochemistry of recent sediments from Great Marsh, Lewes, Delaware. Pp. 285–303, In: T. M. Church (ed.), Marine Chemistry in the Coastal Environment. Symp. Ser. 18. Am. Chem. Soc., Washington.Google Scholar
  145. Terashima, M., and A. Mizuno. (1974). Preliminary results of amino acid and amino-sugar determination on a 200-meter core sample from Lake Biwa. Pp. 219–224. In: S. Hone (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene. Otsu Hydrobiol. Station, Kyoto Univ., Otsu, Jdapan.Google Scholar
  146. Tornabene, T. G., M. Kates, and B. E. Volcani. (1974). Sterols, aliphatic hydrocarbons, and fatty acids of a non-photosynthetic diatom, Nitzschia alba. Lipids, 9: 279–284.Google Scholar
  147. Vallentyne, J. R. (1955). Sedimentary chlorophyll determination as a paleobotanical method. Can. J. Botany, 33: 304–313.Google Scholar
  148. Velden, W. van der, and A. W. Schwartz. (1974). Purines and pyrimidines in sediments from Lake Erie. Science, 185: 691–693.Google Scholar
  149. Velden, W. van der, and A. W. Schwartz. (1976). Nucleic acid base contents as indicators of biological activity in sediments. Pp. 175–183. In: J. O. Nriagu (ed.), Environmental Biogeochemistry. Vol. 1. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  150. Velden, W. van der, G. J. F. Chittenden, and A. W. Schwartz. (1974). Studies on the geochemistry of purines and pyrimidines. Pp. 293–304. In: B. Tissot and F. Bienner (eds.), Advances in Organic Geochemistry, 1973. Editions Technip, Paris.Google Scholar
  151. Wakeham, S. G. (1977). Synchronous fluorescence spectroscopy and its application to indigenous and petroleum-derived hydrocarbons in lacustrine sediments. Envir. Sci. Technol., 11: 272–276.Google Scholar
  152. Wakeham, S. G., and R. Carpenter. (1976). Aliphatic hydrocarbons in sediments of Lake Washington. Limnol. Oceanogr., 21: 711–723.Google Scholar
  153. Weete, J. D. (1974). Fungal Lipid Biochemistry. Plenum, New York, NY.Google Scholar
  154. Welch, J. W., and A. L. Burlingame. (1973). Very long-chain fatty acids in yeast. J. Bacteriol., 115: 464–466.PubMedGoogle Scholar
  155. Wetzel, R. G. (1975). Limnology. Saunders, Philadelphia. PA.Google Scholar
  156. Yamamoto, A., S. Kanari, Y. Fukuo, and S. Hone. (1974). Consolidation and dating of the sediments in core samples from Lake Biwa. Pp. 135–144. In: S. Hone (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene. Otsu Hydrobiol. Station, Kyoto Univ., Otsu, Japan.Google Scholar
  157. Yen, T. F. (1975). Genesis and degradation of petroleum hydrocarbons in marine environments. Pp. 231–266. In: T. M. Church (ed.), Marine Chemistry in the Coastal Environment. Symp. Ser. 18. Am. Chem. Soc., Washington.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • M. A. Barnes
  • W. C. Barnes

There are no affiliations available

Personalised recommendations