Carbanions and Other Nucleophilic Carbon Species

  • Francis A. Carey
  • Richard J. Sundberg


This chapter is concerned with carbanions, which are the conjugate bases (in the Brønsted sense) of organic molecules that are formed by deprotonation of a carbon atom. Carbanions may vary widely in stability, depending on the ability of substituent groups to stabilize negative charge. In the absence of substituents that are effective at delocalizing the charge, proton abstraction from a C-H bond is very difficult.


Carbonyl Compound Phosphonium Salt Proton Abstraction Relative Acidity Organolithium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965.Google Scholar
  2. J. R. Jones, The Ionization of Carbon Acids, Academic Press, New York, 1973.Google Scholar
  3. E. M. Kaiser and D. W. Slocum, in Organic Reactive Intermediates, S. P. McManus (ed.), Academic Press, New York, 1973, Chap. 5.Google Scholar
  4. M. Szwarc, Ions and Ion Pairs in Organic Reactions, Wiley, New York, 1972.Google Scholar
  5. H. F. Ebel, Die Acidität der CH-Säuren, George Thieme Verlag, Stuttgart, 1969.Google Scholar
  6. E. Buncel, Carbanions: Mechanistic and Isotopic Aspects, Elsevier, Amsterdam, 1975.Google Scholar
  7. E. Buncel and T. Durst, Comprehensive Carbanion Chemistry, Elsevier, New York, 1981.Google Scholar
  8. J. Toullec, Adv. Phys. Org. Chem. 18, 1 (1982).CrossRefGoogle Scholar

Chapter 7

  1. 2b.
    G. L. Closs and L. E. Closs, J. Am. Chem. Soc. 85, 2022 (1963).CrossRefGoogle Scholar
  2. f.
    R. Breslow, J. Am. Chem. Soc. 79, 1762 (1957).CrossRefGoogle Scholar
  3. g.
    K. Ogura and G. Tsuchihashi, Tetrahedron Lett., 3151 (1971).Google Scholar
  4. h.
    G. L. Closs and R. B. Larrabee, Tetrahedron Lett., 287 (1965).Google Scholar
  5. i.
    R. B. Woodward and C. Wintner, Tetrahedron Lett., 2689 (1969).Google Scholar
  6. j.
    J. A. Zoltewicz, G. M. Kauffman, and C. L. Smith, J. Am. Chem. Soc. 90, 5939 (1968).CrossRefGoogle Scholar
  7. 3a.
    T.-Y. Luh and L. M. Stock, J. Am. Chem. Soc. 96, 3712 (1974).CrossRefGoogle Scholar
  8. b.
    H. W. Amburn, K. C. Kauffman, and H. Shechter, J. Am. Chem. Soc. 91, 530 (1969).CrossRefGoogle Scholar
  9. 4a.
    G. A. Abad, S. P. Jindal, and T. T. Tidwell, J. Am. Chem. Soc. 95, 6326 (1973).CrossRefGoogle Scholar
  10. b.
    A. Nickon and J. L. Lambert, J. Am. Chem. Soc. 84, 4604 (1962).CrossRefGoogle Scholar
  11. 6.
    G. B. Trimitsis and E. M. Van Dam, J. Chem. Soc. Chem Commun., 610 (1974).Google Scholar
  12. 7.
    A. Streitwieser, Jr., W. B. Hollyhead, A. H. Pudjaatmaka, P. H. Owens, T. L. Kruger, P. A. Rubenstein, R. A. MacQuarrie, M. L. Brokaw, W. K. C. Chu, and H. M. Niemeyer, J. Am. Chem. Soc., 93, 5088 (1971).CrossRefGoogle Scholar
  13. 8.
    F. G. Bordwell and F. J. Cornforth, J. Org. Chem. 43, 1763 (1978).CrossRefGoogle Scholar
  14. 9a.
    P. T. Lansbury, J. Am. Chem. Soc. 83, 429 (1961).CrossRefGoogle Scholar
  15. b.
    D. W. Griffiths and C. D. Gutsche, J. Am. Chem. Soc. 93, 4788 (1971).CrossRefGoogle Scholar
  16. c.
    T. D. Hoffman and D. J. Cram, J. Am. Chem. Soc. 91, 1000 (1969).CrossRefGoogle Scholar
  17. d.
    G. Büchi, D. M. Foulkes, M. Kurono, G. F. Mitchell, and R. S. Schneider, J. Am. Chem. Soc. 89, 6745 (1967).CrossRefGoogle Scholar
  18. e.
    G. Stork, G. L. Nelson, F. Rouessac, and O. Grigone, J. Am. Chem. Soc. 93, 3091 (1971).CrossRefGoogle Scholar
  19. 10.
    T. B. Thompson and W. T. Ford, J. Am. Chem. Soc. 101, 5459 (1979).CrossRefGoogle Scholar
  20. 11.
    A. Streitwieser, Jr., R. G. Lawler, and C. Perrin, J. Am. Chem. Soc. 87, 5383 (1965);CrossRefGoogle Scholar
  21. J. E. Hofmann, A. Schriesheim, and R. E. Nichols, Tetrahedron Lett., 1745 (1965).Google Scholar
  22. 12.
    E. J. Stamhuis, W. Mass, and H. Wynberg, J. Org. Chem. 30, 2160 (1965).CrossRefGoogle Scholar
  23. 13.
    B. G. Cox, J. Am. Chem. Soc. 96, 6823 (1974).CrossRefGoogle Scholar
  24. 14.
    E. L. Eliel, A. A. Hartmann, and A. G. Abatjoglou, J. Am. Chem. Soc. 96, 1807 (1974);CrossRefGoogle Scholar
  25. J.-M. Lehn and G. Wipff, J. Am. Chem. Soc. 98, 7498 (1976).CrossRefGoogle Scholar
  26. 15.
    S. Danishefsky and R. K. Singh, J. Am. Chem. Soc. 97, 3239 (1975).CrossRefGoogle Scholar
  27. 16.
    R. B. Woodward and G. Small, Jr., J. Am. Chem. Soc. 72, 1297 (1950).CrossRefGoogle Scholar
  28. 17a.
    E. J. Corey, T. H. Topie, and W. A. Wozniak, J. Am. Chem. Soc. 77, 5415 (1955).CrossRefGoogle Scholar
  29. b.
    E. W. Garbisch, Jr., J. Org. Chem. 30, 2109 (1965).CrossRefGoogle Scholar
  30. c.
    F. Caujolle and D. Q. Quan, C. R. Acad. Sci. C 265, 269 (1967).Google Scholar
  31. d.
    C. W. P. Crowne, R. M. Evans, G. F. H. Green and A. G. Long, J. Chem. Soc., 4351 (1956).Google Scholar
  32. e.
    N. C. Deno and R. Fishbein, J. Am. Chem. Soc. 95, 7445 (1973).CrossRefGoogle Scholar
  33. 18a.
    N. S. Mills, J. Shapiro, and M. Hollingsworth, J. Am. Chem. Soc. 103, 1263 (1981).CrossRefGoogle Scholar
  34. b.
    N. S. Mills, J. Am. Chem. Soc. 104, 5689 (1982).CrossRefGoogle Scholar
  35. 19.
    H. M. Walborsky and L. M. Turner, J. Am. Chem. Soc. 94, 2273 (1972).CrossRefGoogle Scholar
  36. 20.
    Y. Jasor, M. Gaudry, and A. Marquet, Tetrahedron Lett., 53 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations