Advertisement

Study and Description of Organic Reaction Mechanisms

  • Francis A. Carey
  • Richard J. Sundberg

Abstract

The chapters that follow this one will be devoted largely to the description of specific organic reactions. The development of a working understanding of organic chemistry requires the mastery of certain fundamental reaction types that occur in a wide variety of individual reactions. Most organic reactions occur in several steps; these steps constitute the reaction mechanism. Knowledge of the detailed mechanism of a reaction often reveals close relationships between reactions that otherwise might appear to be unrelated. Consideration of reaction mechanism is also usually the basis for development of new reaction processes and improvement of existing procedures. In this chapter, the ways in which organic reactions can be studied in order to determine reaction mechanism will be discussed. The chapter considers the types of experimental studies that provide data and the methods by which it is possible to develop information about reaction mechanisms from such data.1

Keywords

Transition State Isotope Effect Substituent Effect Transition State Structure Isodesmic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

General

  1. K. B. Wiberg, Physical Organic Chemistry, John Wiley, New York, 1964.Google Scholar
  2. J. A. Hirsch, Concepts in Theoretical Organic Chemistry, Allyn and Bacon, Boston, 1974.Google Scholar
  3. J. Hine, Structural Effects on Equilibria in Organic Chemistry, John Wiley, New York, 1975.Google Scholar
  4. C. D. Ritchie, Physical Organic Chemistry, Marcel Dekker, New York, 1975.Google Scholar
  5. E. S. Lewis, Investigation of Rates and Mechanisms of Reaction, Vol. VI, Part 1 of Techniques of Chemistry, A. Weissberger (ed.), Wiley—Interscience, New York, 1974.Google Scholar

Thermodynamics

  1. D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, Wiley, New York, 1969.Google Scholar
  2. J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.Google Scholar
  3. G. J. Janz, Thermodynamic Properties of Organic Compounds, Academic Press, New York, 1967.Google Scholar

Linear Free-Energy Relationships and Substituent Effects

  1. P. R. Wells, Linear Free Energy Relationships, Academic Press, New York, 1968.Google Scholar
  2. C. D. Johnson, The Hammett Equation, Cambridge Unversity Press, Cambridge, 1973.Google Scholar
  3. R. D. Topsom, Prog. Phys. Org. Chem. 12, 1 (1976).CrossRefGoogle Scholar
  4. A. Pross and L. Radom, Prog. Phys. Org. Chem. 13, 1 (1981).CrossRefGoogle Scholar
  5. R. D. Topsom, Acc. Chem. Res. 16, 292 (1983).CrossRefGoogle Scholar

Isotope Effects

  1. L. Melander, Isotope Effects on Reaction Rates, Ronald Press, New York, 1960.Google Scholar
  2. C. J. Collins and N. S. Bowman (eds.), Isotope Effects on Chemical Reactions, Van Nostrand Reinhold, New York, 1970.Google Scholar
  3. L. Melander and W. H. Saunders, Jr., Reaction Rates of Isotopic Molecules, John Wiley, New York, 1980.Google Scholar

Solvent Effects

  1. J. F. Coetzee and C. D. Ritchie, Solute—Solvent Interactions, Marcel Dekker, New York, 1969.Google Scholar

Catalysis

  1. W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969.Google Scholar
  2. R. P. Bell, The Proton in Chemistry, Chapman and Hall, London, 1973.Google Scholar
  3. C. H. Rochester, Acidity Functions, Academic Press, New York, 1970.Google Scholar

Chapter 4

  1. 1.
    W. Kusters and P. deMayo, J. Am. Chem. Soc. 96, 3502 (1974).CrossRefGoogle Scholar
  2. 2.
    A. Streitwieser, H. A. Hammond, R. H. Jagow, R. M. Williams, R. G. Jesaitis, C. J. Chang, and R. Wolf, J. Am. Chem. Soc. 92, 5141 (1970).CrossRefGoogle Scholar
  3. 3.
    M. T. H. Liu and D. H. T. Chien, J. Chem. Soc. Perkin Trans. 2, 937 (1974).Google Scholar
  4. 4.
    O. Exner in Correlation Analysis in Chemistry, N. B. Chapman and B. Shorter (eds.), Plenum Press, New York, 1978, Chap. 10.Google Scholar
  5. 5.
    O. R. Zaborsky and E. T. Kaiser, J. Am. Chem. Soc. 92, 860 (1970).CrossRefGoogle Scholar
  6. 6.
    W. M. Schubert and J. R. Keeffe, J. Am. Chem. Soc. 94, 559 (1972).CrossRefGoogle Scholar
  7. 7.
    D. H. Rosenblatt, L. A. Hull, D. C. DeLuca, G. T. Davis, R. C. Weglein, and H. K. R. Williams, J. Am. Chem. Soc. 89, 1158 (1967).CrossRefGoogle Scholar
  8. 8a.
    W. K. Kwok, W. G. Lee, and S. I. Miller, J. Am. Chem. Soc. 91, 468 (1969).CrossRefGoogle Scholar
  9. 8b.
    H. C. Brown and E. N. Peters, J. Am. Chem. Soc. 95, 2400 (1973).CrossRefGoogle Scholar
  10. 8c.
    W. M. Schubert and D. F. Gurka, J. Am. Chem. Soc. 91, 1443 (1969).CrossRefGoogle Scholar
  11. 8d.
    J. Roček and A. Riehl, J. Am. Chem. Soc. 88, 4749 (1966).CrossRefGoogle Scholar
  12. 9a.
    V. J. Shiner, and J. O. Stoffer, J. Am. Chem. Soc. 92, 3191 (1970).CrossRefGoogle Scholar
  13. 9b.
    M. H. Davies, J. Chem. Soc. Perkin Trans.2, 1018 (1974).Google Scholar
  14. 9c.
    J. E. Baldwin and J. A. Kapecki, J. Am. Chem. Soc. 91, 3106 (1969).CrossRefGoogle Scholar
  15. 9d.
    H. G. Bull, K. Koehler, T. C. Pletcher, J. J. Ortiz, and E. H. Cordes, J. Am. Chem. Soc. 93, 3002 (1971).CrossRefGoogle Scholar
  16. 9e.
    R. B. Timmons, J. deGuzman, and R. E. Varnerin, J. Am. Chem. Soc. 90, 5996 (1968).CrossRefGoogle Scholar
  17. 9f.
    Y. Pocker and J. H. Exner, J. Am. Chem. Soc. 90, 6764 (1968).CrossRefGoogle Scholar
  18. 9g.
    K. D. McMichael, J. Am. Chem. Soc. 89, 2943 (1967).CrossRefGoogle Scholar
  19. 9h.
    R. J. Cvetanović, F. J. Duncan, W. E. Falconer, and R. S. Irwin, J. Am. Chem. Soc. 87, 1827 (1965).CrossRefGoogle Scholar
  20. 10.
    J. J. Eisch and S.-G. Rhee, J. Am. Chem. Soc. 96, 7276 (1974).CrossRefGoogle Scholar
  21. 11.
    C. G. Swain, A. L. Powell, W. A. Sheppard, and C. R. Morgan, J. Am. Chem. Soc. 101, 3576 (1979).CrossRefGoogle Scholar
  22. 12.
    R. S. Shue, J. Am. Chem. Soc. 93, 7116 (1971).CrossRefGoogle Scholar
  23. 13.
    D. N. Kevill and G. M. L. Lin, J. Am. Chem. Soc. 101, 3916 (1979).CrossRefGoogle Scholar
  24. 14.
    C. G. Swain, J. E. Sheats, and K. G. Harbison, J. Am. Chem. Soc. 97, 783 (1975).CrossRefGoogle Scholar
  25. 15.
    G. E. Hall and J. D. Roberts, J. Am. Chem. Soc. 93, 2203 (1971).CrossRefGoogle Scholar
  26. 16.
    R. K. Lustgarten and H. G. Richey, Jr., J. Am. Chem. Soc. 96, 6393 (1974).CrossRefGoogle Scholar
  27. 17.
    B. W. Palmer and A. Fry, J. Am. Chem. Soc. 92, 2580 (1970).CrossRefGoogle Scholar
  28. 18.
    P. R. Wells, Linear Free Energy Relationships, Academic Press, New York, 1968, pp. 12, 13.Google Scholar
  29. 19.
    T. B. McMahon and P. Kebarle, J. Am. Chem. Soc. 99, 2222 (1972).CrossRefGoogle Scholar
  30. 20.
    J. Bromilow, R. T. C. Brownlee, V. O. Lopez, and R. W. Taft, J. Org. Chem. 44, 4766 (1979).CrossRefGoogle Scholar
  31. 21.
    A. Fischer, W. J. Galloway, and J. Vaughan, J. Chem. Soc., 3591 (1964);Google Scholar
  32. 21a.
    C. L. Liotta, E. M. Perdue, and H. P. Hopkins, Jr., J. Am. Chem. Soc. 96, 7308 (1974).CrossRefGoogle Scholar
  33. 22.
    E. S. Lewis, J. T. Hill, and E. R. Newman, J. Am. Chem. Soc. 90, 662 (1968).CrossRefGoogle Scholar
  34. 23.
    E. M. Arnett and D. R. McKelvey, J. Am. Chem. Soc. 88, 2598 (1966).CrossRefGoogle Scholar
  35. 24.
    C. A. Bunton and G. Stedman, J. Chem. Soc., 2420 (1958);Google Scholar
  36. 24a.
    C. A. Bunton and E. A. Halevi, J. Chem. Soc., 4917 (1952).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations