Stereochemical Principles

  • Francis A. Carey
  • Richard J. Sundberg


Given a combination of atoms expressed only by a molecular formula, many quite different molecular structures that differ from each other in the nature or sequence of bonding of the atoms in space are possible. Each individual molecular assembly is called an isomer, and the constitution of a compound is a particular combination of bonds and sequences of atoms of given molecular formula. For example, propanal, acetone, cyclopropanol, and 2-methyloxirane each correspond to the molecular formula C3H6O, but differ in constitution.


Chiral Center Chiral Molecule Amine Oxide Sequence Rule Asymmetric Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962.Google Scholar
  2. K. Mislow, Introduction to Stereochemistry, W. A. Benjamin, New York, 1966.Google Scholar
  3. G. Natta and M. Farina, Stereochemistry, Harper and Row, New York, 1972.Google Scholar
  4. The Van’t Hofl—LeBel Commemorative Issue, Tetrahedron 30, 1473–2007 (1974).Google Scholar
  5. B. Testa, Principles of Organic Stereochemistry, Marcel Dekker, New York, 1979.Google Scholar

Stereochemistry in Biological Processes

  1. W. L. Alworth, Stereochemistry and Its Application in Biochemistry, Wiley—Interscience, New York, 1972.Google Scholar
  2. R. Bentley, Molecular Asymmetry in Biology, Vols. I and II, Academic Press, New York, 1969, 1970.Google Scholar
  3. J. W. Cornforth, Science 193, 121 (1976).CrossRefGoogle Scholar

Stereoselective and Stereospecific Reactions

  1. J. D. Morrison and H. S. Mosher, Asymmetric Organic Reactions, 2nd Printing, American Chemical Society, Washington, D.C., 1976.Google Scholar
  2. Y. Izumi and A. Tai, Stereodifferentiating Reactions, Academic Press, New York, 1977.Google Scholar

Chapter 2

  1. 2.
    M. Sprecher and D. B. Sprinson, J. Org. Chem. 28, 2490 (1963).CrossRefGoogle Scholar
  2. 3.
    K. L. Marsi, J. Org. Chem. 39, 265 (1974).CrossRefGoogle Scholar
  3. 4a.
    J. A. Pettus, Jr., and R. E. Moore, J. Am. Chem. Soc. 93, 3087 (1971).CrossRefGoogle Scholar
  4. 4b.
    K. T. Black and H. Hope, J. Am. Chem. Soc. 93, 3053 (1971).CrossRefGoogle Scholar
  5. 4c.
    J. Dillon and K. Nakanishi, J. Am. Chem. Soc. 96 4055 (1974).CrossRefGoogle Scholar
  6. 4d.
    M. Miyano and C. R. Dorn, J. Am. Chem. Soc. 95, 2664 (1973).CrossRefGoogle Scholar
  7. 4e.
    M. Koreeda, G. Weiss, and K. Nakanishi, J. Am. Chem. Soc. 95, 239 (1973).CrossRefGoogle Scholar
  8. 4f.
    P. A. Apgar and M. L. Ludwig, J. Am. Chem. Soc. 94, 964 (1972).CrossRefGoogle Scholar
  9. 4g.
    M. R. Jones and D. J. Cram, J. Am. Chem. Soc. 96, 2183 (1974).CrossRefGoogle Scholar
  10. 5a.
    J. W. de Haan and L. J. M. van de Ven, Tetrahedron Lett., 2703 (1971).Google Scholar
  11. 5b.
    T. Sone, S. Terashima, and S. Yamada, Synthesis, 725 (1974).Google Scholar
  12. 5c.
    B. Witkop and C. M. Foltz, J. Am. Chem. Soc. 79, 197 (1957).CrossRefGoogle Scholar
  13. 5d.
    S. Iwaki, S. Marumo, T. Saito, M. Yamada, and K. Katagiri, J. Am. Chem. Soc. 96, 7842 (1974).CrossRefGoogle Scholar
  14. 5e.
    E. W. Yankee, B. Spencer, N. E. Howe, and D. J. Cram, J. Am. Chem. Soc. 95, 4220 (1973).CrossRefGoogle Scholar
  15. 5f.
    R. S. Lenox and J. A. Katzenellenbogen, J. Am. Chem. Soc. 95, 957 (1973).CrossRefGoogle Scholar
  16. 5g.
    R. Bausch, B. Bogdanovic, H. Dreeskamp, and J. B. Koster, Justus Liebigs Ann. Chem., 1625 (1974).Google Scholar
  17. 6.
    J. A. Marshall, T. R. Konicek, and K. E. Flynn, J. Am. Chem. Soc. 102, 3287 (1980).CrossRefGoogle Scholar
  18. 7.
    M. Cohn, J. E. Pearson, E. L. O’Connell, and I. A. Rose, J. Am. Chem. Soc. 92, 4095 (1970).CrossRefGoogle Scholar
  19. 8.
    R. K. Hill, S. Yan, and S. M. Arfin, J. Am. Chem. Soc. 95, 7857 (1973).CrossRefGoogle Scholar
  20. 9.
    J. J. Gajewski and L. T. Burka, J. Org. Chem. 35, 2190 (1970).CrossRefGoogle Scholar
  21. 11.
    H. W. Gschwend, J. Am. Chem. Soc. 94, 8430 (1972).CrossRefGoogle Scholar
  22. 12.
    T. C. Bruice and S. Benkovic, Bioorganic Mechanisms, Vol. 1, W. A. Benjamin, New York, 1966, p. 305.Google Scholar
  23. 13a.
    M. Kainosho, K. Ajisaka, W. H. Pirkle, and S. D. Beare, J. Am. Chem. Soc. 94, 5924 (1972).CrossRefGoogle Scholar
  24. 13b.
    M. Kainosho, K. Ajisaka, W. H. Pirkle, and S. D. Beare, J. Am. Chem. Soc. 94, 5924 (1972).CrossRefGoogle Scholar
  25. 13c.
    M. Raban and K. Mislow, Tetrahedron Lett., 3961 (1966).Google Scholar
  26. 13d.
    R. K. Hill, S. Yan, and S. M. Arfin, J. Am. Chem. Soc. 95, 7857 (1973).CrossRefGoogle Scholar
  27. 13e.
    V. J. Morlino and R. B. Martin, J. Am. Chem. Soc. 89, 3107 (1967).CrossRefGoogle Scholar
  28. 14a.
    G. Helmchen and G. Staiger, Angew. Chem. Int. Ed. Engl. 16, 116 (1977).CrossRefGoogle Scholar
  29. 14b.
    M. Farina and C. Morandi, Tetrahedron 30, 1819 (1974).CrossRefGoogle Scholar
  30. 14c.
    D. T. Longone and M. T. Reetz, Chem. Commun., 46 (1967).Google Scholar
  31. 14d.
    I. T. Jacobson, Acta Chem. Scand. 21, 2235 (1967).CrossRefGoogle Scholar
  32. 14e.
    R. J. Ternansky, D. W. Balogh, and L. A. Paquette, J. Am. Chem. Soc. 104, 4503 (1982).CrossRefGoogle Scholar
  33. 14f.
    C. Ganter and K. Wicker, Helv. Chim. Acta 53, 1693 (1970).CrossRefGoogle Scholar
  34. 14g.
    M. S. Newman and D. Lednicer, J. Am. Chem. Soc. 78, 4765 (1956).CrossRefGoogle Scholar
  35. 14h.
    T. Otsubo, R. Gray, and V. Boekelheide, J. Am. Chem. Soc. 100, 2449 (1978).CrossRefGoogle Scholar
  36. 14i.
    J. H. Brewster and R. S. Jones, Jr., J. Org. Chem. 34, 354 (1969).CrossRefGoogle Scholar
  37. 14j.
    H. Gerlach, Helv. Chim. Acta 51, 1587 (1968).CrossRefGoogle Scholar
  38. 15.
    P. Finocchiaro, D. Gust, and K. Mislow, J. Am. Chem. Soc. 96, 2165 (1974).CrossRefGoogle Scholar
  39. 16.
    F.-C. Huang, L. F. H. Lee, R. S. D. Mittal, P. R. Ravikumar, J. A. Chan, C. J. Sih, E. Caspi, and C. R. Eck, J. Am. Chem. Soc. 97, 4144 (1975).CrossRefGoogle Scholar
  40. 17.
    M. Raban, S. K. Lauderback, and D. Kost, J. Am. Chem. Soc. 97, 5178 (1975).CrossRefGoogle Scholar
  41. 18.
    D. J. Cram and F. A. Abd Elhafez, J. Am. Chem. Soc. 74, 5828 (1952).CrossRefGoogle Scholar
  42. 19.
    Y.-F. Cheung and C. Walsh, J. Am. Chem. Soc. 98, 3397 (1976).CrossRefGoogle Scholar
  43. 20.
    D. M. Jerina, H. Selander, H. Yagi, M. C. Wells, J. F. Davey, V. Mahadevan, and D. T. Gibson, J. Am. Chem. Soc. 98, 5988 (1976).CrossRefGoogle Scholar
  44. 21.
    Y. Fujimoto, F. Irreverre, J. M. Karle, I. L. Karle, and B. Witkop, J. Am. Chem. Soc. 93, 3471 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations