Advertisement

Chemical Bonding and Molecular Structure

  • Francis A. Carey
  • Richard J. Sundberg

Abstract

Organic chemistry is a broad field which includes activities that intersect with such diverse areas as biology, medicine and pharmacology, materials science, chemical and petroleum engineering, and fundamental studies of molecular structure. The purpose of this text is to provide coverage of a central core of organic chemistry. This core of knowledge can be applied within organic chemistry or to other fields, such as those named above, which require significant contributions from organic chemistry. One organizational approach to organic chemistry divides it into three main areas. These areas are structure, dynamics, and synthesis. Structure includes the description of organic molecules and the methods for determining, analyzing, and predicting molecular geometry and bonding. Dynamics refers to the chemical and physical properties and transformations of molecules. Synthesis includes those activities which permit chemists to assemble new molecules and to convert existing substances into new compounds. These three areas are all interrelated, but synthesis is built on knowledge of both structure and reactions (chemical dynamics), while understanding dynamic processes ultimately rests on detailed knowledge about molecular structure. A firm grounding in the principles of structure and chemical bonding is therefore an essential starting point for fuller appreciation of dynamics and synthesis. In this first chapter we will discuss the ideas that have proven most useful to organic chemists for describing and correlating facts, concepts, and theories about the structure of organic molecules.

Keywords

Molecular Orbital Atomic Orbital Valence Bond Bond Dissociation Energy Lewis Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. C. K. Ingold, Structure and Mechanism in Organic Chemistry, Second Edition, Cornell University Press, Ithaca, New York, 1969.Google Scholar
  2. L. N. Ferguson, Organic Molecular Structure, Willard Grant Press, Boston, 1975.Google Scholar
  3. A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists, John Wiley and Sons, New York, 1961.Google Scholar
  4. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill Book Co., New York, 1969.Google Scholar
  5. K. B. Wiberg, Physical Organic Chemistry, John Wiley and Sons, New York, 1964.Google Scholar
  6. A. Liberles, Introduction to Theoretical Organic Chemistry, Macmillan., New York, 1968.Google Scholar
  7. R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970.Google Scholar
  8. M. Orchin, The Importance of Antibonding Orbitals, Houghton Mifflin, Boston, 1967.Google Scholar
  9. W. T. Borden, Modern Molecular Orbital Theory for Organic Chemists, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.Google Scholar
  10. H. E. Zimmerman, Quantum Mechanics for Organic Chemists, Academic Press, New York, 1975.Google Scholar
  11. I. G. Cszimadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam, 1976.Google Scholar
  12. M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975.CrossRefGoogle Scholar
  13. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, New York, 1976.Google Scholar
  14. L. Salem, Electrons in Chemical Reactions, Wiley, New York, 1982.Google Scholar

Chapter 1

  1. 2a.
    H. Prinzbach, Pure Appl. Chem. 28, 281 (1971).CrossRefGoogle Scholar
  2. 2b.
    E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt—Dryden, New York, 1959, pp. 69, 70.Google Scholar
  3. 2c.
    T. J. Barton, R. W. Roth, and J. G. Verkade, J. Am. Chem. Soc. 94, 8854 (1972).CrossRefGoogle Scholar
  4. 3a.
    R. L. Reeves and W. F. Smith, J. Am. Chem. Soc. 85, 724 (1963).CrossRefGoogle Scholar
  5. 3b.
    R. B. Martin, J. Chem. Soc. Chem. Commun. 793 (1972).Google Scholar
  6. 3c.
    J. A. Joule and G. F. Smith, Heterocyclic Chemistry, Van Nostrand—Reinhold, London, 1972, pp. 194–195;Google Scholar
  7. 3d.
    J. A. Joule and G. F. Smith, Heterocyclic Chemistry, Van Nostrand—Reinhold, London, 1972, p. 64.Google Scholar
  8. 4a.
    H. L. Ammon and G. L. Wheeler, J. Am. Chem. Soc. 97, 2326 (1975).CrossRefGoogle Scholar
  9. 4b.
    R. Breslow, T. Eicher, A. Krebs, R. A. Peterson, and J. Posner, J. Am. Chem. Soc. 87, 1320 (1965).CrossRefGoogle Scholar
  10. 4c.
    R. B. Woodward, J. Am. Chem. Soc. 63, 1123 (1941) .CrossRefGoogle Scholar
  11. 5.
    R. T. Sanderson, J. Am. Chem. Soc. 97, 1367 (1975).CrossRefGoogle Scholar
  12. 6.
    D. W. Davis, D. A. Shirley, and T. D. Thomas, J. Am. Chem. Soc. 94, 6565 (1972).CrossRefGoogle Scholar
  13. 7a.
    R. C. Bingham, J. Am. Chem. Soc. 98, 535 (1976).CrossRefGoogle Scholar
  14. 7b.
    W. L. Jorgensen and L. Salem, The Organic Chemist’s Book of Orbitals, Academic Press, New York, 1973, pp. 179–184.Google Scholar
  15. 7c.
    H. Stafast and H. Bock, Tetrahedron 32, 855 (1976).CrossRefGoogle Scholar
  16. 7d.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley—Interscience, New York, 1976, pp. 51–57.Google Scholar
  17. 7e.
    L. Libit and R. Hoffmann, J. Am. Chem. Soc. 96, 1370 (1974).CrossRefGoogle Scholar
  18. 7f.
    W. J. Hehre, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 94, 1496 (1972).CrossRefGoogle Scholar
  19. 8a.
    R. Breslow and J. M. Hoffmann, Jr., J. Am. Chem. Soc. 94, 2110 (1972).CrossRefGoogle Scholar
  20. 8b.
    R. Breslow and P. Dowd, J. Am. Chem. Soc. 85, 2729 (1963).CrossRefGoogle Scholar
  21. 8b.
    R. Breslow and W. Chu, J. Am. Chem. Soc. 95, 411 (1973).CrossRefGoogle Scholar
  22. 9.
    W. L. Jorgensen and L. Salem, The Organic Chemist’s Book of Orbitals, Academic Press, 1973, pp. 93, 94.Google Scholar
  23. 10.
    R. Breslow and J. M. Hoffmann, J. Am. Chern. Soc. 94, 2110 (1972);CrossRefGoogle Scholar
  24. 10a.
    M. Saunders, R. Berger, A. Jaffe, M. McBride, J. O’Neill, R. Breslow, J. M. Hoffmann, C. Perchonock, E. Wasserman, R. S. Hutton, and V. J. Kuck, J. Am. Chem. Soc. 95, 3017 (1973);CrossRefGoogle Scholar
  25. 10b.
    R. Breslow and S. Mazur, J. Am. Chem. Soc. 95, 584 (1973).CrossRefGoogle Scholar
  26. 11.
    C. A. Coulson and A. Streitwieser, Jr., Dictionary of π-Electron Calculations, W. H. Freeman and Co., San Francisco, 1965, p. 184.Google Scholar
  27. 12.
    R. E. Lehr and A. P. Marchand, Orbital Symmetry: A Problem-Solving Approach, Academic Press, New York, 1972, p. 37.Google Scholar
  28. 13.
    C. A. Coulson and A. Streitwieser, Jr., Dictionary of π-Electron Calculations, W. H. Freeman and Co., San Francisco, 1965, p. 1.Google Scholar
  29. 15.
    N. L. Allinger and N. A. Pamphilis, J. Org. Chem. 38, 316 (1973).CrossRefGoogle Scholar
  30. 16.
    K. B. Wiberg and F. H. Walker, J. Am. Chem. Soc. 104, 5239 (1982).CrossRefGoogle Scholar
  31. 17.
    R. B. Turner, B. J. Mallon, M. Tichy, W. v. E. Doering, W. R. Roth, and G. Schröder, J. Am. Chem. Soc. 95, 8605 (1973).CrossRefGoogle Scholar
  32. 18.
    P. J. Krueger and J. Jan, Can. J. Chem. 48, 3236 (1970);CrossRefGoogle Scholar
  33. 18a.
    M. D. Rozeboom and K. N. Houk, J. Am. Chem. Soc. 104, 1189 (1982).CrossRefGoogle Scholar
  34. 19b.
    R. D. Bertrand, D. M. Grant, E. L. Allred, J. C. Hinshaw, and A. B. Strong, J. Am. Chem. Soc. 94, 997 (1972).CrossRefGoogle Scholar
  35. 19c.
    K. W. Cox, M. D. Harmony, G. Nelson, and K. B. Wiberg, J. Chem. Phys. 50, 1976 (1969)CrossRefGoogle Scholar
  36. 20.
    K. N. Houk and L. L. Munchausen, J. Am. Chem. Soc. 98, 937 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations