Control of Wavelength, Polarization, Time-Structure and Divergence for Synchrotron Radiation Topography

  • Michael Hart
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 63)


In the wavelength range near λ = lA Bragg reflection perfect crystals are the most useful optical components available. Modern commercially available single crystals of silicon and germanium are inexpensive, almost undamaged by radiation and, from the diffraction point, ideally perfect.


Bragg Reflection Electron Bunch Reflection System Beam Conditioning Bragg Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. James (1948). The optical principles of the diffraction of X-rays, Bell, LondonGoogle Scholar
  2. 2.
    W.H. Zachariasen (1945) Theory of X-ray diffraction in crystals, Wiley, New York.Google Scholar
  3. 3.
    J.C. Slater (1958) Rev. Mod.Phys. 30, 197MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    G. Borrmann, (1959) Rontgenwellenfelder in Beitrage zur Physik und Chemie des 20Jahrhunderts, Vieweg und Sohn, BrunswickGoogle Scholar
  5. 5.
    M. von Laue (1960) Rontgenstrahl - Interferenzen, Akademische Verlag, FrankfurtGoogle Scholar
  6. 6.
    R.W. James (1963) Solid State Phys. 15, 55Google Scholar
  7. 7.
    B. W. Batterman and H. Cole (1964) Rev. Mod. Phys. 36, 681Google Scholar
  8. 8.
    L.V. Azaroff, K. Kaplow, N. Kato, R.J. Weiss, A.J.C. Wilson and R.A. Young (1974) X-ray diffraction,McgrawHill, New YorkGoogle Scholar
  9. 9.
    Z.G. Pinsker (1978) Dynamical scattering of X-rays in crystals. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    A.H. Compton and S.K. Allison (1935) X-rays in theory and experiment, Van Nostrand, New York.Google Scholar
  11. 11.
    L.V. Azaroff (1974) X-ray Spectroscopy, McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    U. Bonse and M. Hart (1965) App. Phys. Lett. 7, 238Google Scholar
  13. 13.
    M. Hart and D.P. Siddons (1978) Nature, London 275, 45ADSCrossRefGoogle Scholar
  14. 14.
    M. Hart and D.P. Siddons (1978) Workshop on X-ray and neutron interferometry. Ed. U. Bonse and H. Rauch.(OUP)Google Scholar
  15. 15.
    M. Hart and A.R.D. Rodrigues (1978) J. Appt Cryst. 11, 248CrossRefGoogle Scholar
  16. 16.
    M. Hart and A.R.D. Rodrigues (1979) Phil. Mag 40, 149CrossRefGoogle Scholar
  17. 17.
    M. Hart (1975) J. Appl. Cryst. 8, 436Google Scholar
  18. 18.
    U. Bonse, G. Materlik and W. Schroder (1976) J. Appl. Cryst. 9, 223.Google Scholar
  19. 19.
    S. Kikuta and K. Kohra (1970) J. Phys. Soc. Japan 29, 1322Google Scholar
  20. 20.
    M. Hart (1978) Phil. Mag 38, 41CrossRefGoogle Scholar
  21. 21.
    H. Cole, F.W. Chambers and C.G. Wood (1961) J. Appl. Phys. 32, 1942Google Scholar
  22. 22.
    J. Miltat (1979) Imaging Processes and coherence in physics, Les Houches, SpringerGoogle Scholar
  23. 23.
    K. Kohra, M. Ando and T. Matsushita (1978) Nucl. Instrum & Meth. 152, 161ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Michael Hart

There are no affiliations available

Personalised recommendations