Advertisement

White Beam Synchrotron Radiation Topography

  • J. Miltat
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 63)

Abstract

White beam X-ray topography (Laue Technique) is probably the simplest available X-ray imaging technique. Pioneering work by Guinier and Tennevin [1] and Schultz [2] was however followed with little applications due to the lack of intense, low divergence white beam X-ray sources. Synchrotron sources possess both of these qualities. They therefore appear as ideal sources for such experiments.

Keywords

Misfit Dislocation Perfect Crystal Synchrotron Source Reflection Geometry Geometrical Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guinier and J. Tennevin (1949), Acta Cryst. 2, 133CrossRefGoogle Scholar
  2. 2.
    L.G. Schultz (1954), Trans.AIME 200, 1082 3.Google Scholar
  3. 3.
    U. Bonse, this volumeGoogle Scholar
  4. 4.
    M. Sauvage in Synchrotron Radiation Research, to be publishedGoogle Scholar
  5. 5.
    H.Cullity (1956) in Elements of X-ray Diffraction Addison Wesley, Reading Mass.Google Scholar
  6. 6.
    J.B. Cohen (1966) in Diffraction Methods in Materials Science Macmillan, New YorkGoogle Scholar
  7. 7.
    M. Hart (1975), J.Appl.Cryst. 8, 436CrossRefGoogle Scholar
  8. 8.
    M. Hart, this volumeGoogle Scholar
  9. 9.
    T. Tuomi, K. Naukkarinen and P. Rabe (1974), Phys.Stat.Sol. (a) 25, 93ADSCrossRefGoogle Scholar
  10. 10.
    J.F. Petroff and M. Sauvage (1978), J. Crystal Growth 43, 628 A.R. Lang (1978), in Modern Diffraction and Imaging Techniques in Material Science (ed. S. Amelinckx et al) North Holland - Amsterdam - London, 2nd EditionGoogle Scholar
  11. 12.
    J. Miltat in Proceedings of the workshop on Imaging Processes and Coherence in Physics Les Houches - March 1979. Springer-Verlag, BerlinGoogle Scholar
  12. 13.
    M. Hart and A.R. Lang (1965), Acta Cryst. 19, 73CrossRefGoogle Scholar
  13. 14.
    M. Hattori, H. Kuriyama and N. Kato (1965), J. Phys.Soc.Jap. 20, 1047ADSCrossRefGoogle Scholar
  14. 15.
    N. Kato, this volumeGoogle Scholar
  15. 16.
    P. Skalicky and C. Malgrange (1972), Acta Cryst. A28, 501CrossRefGoogle Scholar
  16. 17.
    M. Sauvage, J.F. Petroff and P. Skalicky (1977), Phys.Stat.Sol. (a) 43, 473ADSCrossRefGoogle Scholar
  17. 18.
    T. Tuomi, M. Tilli, V. Kelha and J.D. Stephenson (1978), Phys.Stat.Soli (a) 50, 427ADSCrossRefGoogle Scholar
  18. 19.
    J. Gastaldi and G. Jourdan (1978), Phys.Stat.Sol. (a) 49, 529ADSCrossRefGoogle Scholar
  19. 20.
    J.D. Stephenson, V. Kelha, M. Tilli and T. Tuomi (1978) Nucl.Inst.Methods 152, 319ADSCrossRefGoogle Scholar
  20. 21.
    A. Authier (1967), Adv. X-ray Analysis 10, 9CrossRefGoogle Scholar
  21. 22.
    C. Willaime and A. Authier (1969), Bull.Soc.Fr.Miner.Cryst.89269Google Scholar
  22. 23.
    Z3. J. Miltat and D.K. Bowen (1975), J.Appl Cryst. 8, 657CrossRefGoogle Scholar
  23. 24.
    H. Klapper (1976), J.Appl.Cryst. 9, 310CrossRefGoogle Scholar
  24. 25.
    J.-I. Chikawa (1965), J.Appl.Phys. 36, 3496ADSCrossRefGoogle Scholar
  25. 26.
    B.K. Tanner, D. Midgley and M. Safa (1977), J.Appl.Cryst. 10, 281CrossRefGoogle Scholar
  26. 27.
    A. Authier and F. Balibar (1970), Acta Cryst. A26, 647CrossRefGoogle Scholar
  27. 28.
    Y. Ando and N. Kato (1970), J.Appl.Cryst. 3, 74CrossRefGoogle Scholar
  28. 29.
    M. Sauvage (1978), Nucl.Inst.Methods 152, 313ADSCrossRefGoogle Scholar
  29. 30.
    J. Miltat (1978), Nucl.Inst.Meth. 152, 323ADSCrossRefGoogle Scholar
  30. 31.
    B.K. Tanner, M. Safa and D. Midgley (1977), J.Appl.Cryst. 10, 91CrossRefGoogle Scholar
  31. 32.
    I.M. Buckley-Golder, B.K. Tanner and G.F. Clark (1977), J.Appl.J.MILTAT Cryst. 10, 502CrossRefGoogle Scholar
  32. 33.
    C. Jourdan and J. Gastaldi (1979), Scripta Met. 13, 55CrossRefGoogle Scholar
  33. 34.
    J. Gastaldi and C. Jourdan (1979), Phys.Stat.Sol. (a) 52, 139ADSCrossRefGoogle Scholar
  34. 35.
    I.B. MacCormack and B.K. Tanner (1978), J.Appl.Cryst. 11, 40CrossRefGoogle Scholar
  35. 36.
    M. Safa, B.K. Tanner, H. Klapper and B.M. Wanklyn (1977), Phil.Mag. 35, 811ADSCrossRefGoogle Scholar
  36. 37.
    B.K. Tanner (1977), Progress in Crystal Growth and Assessment 1, 23CrossRefGoogle Scholar
  37. 38.
    J. Bordas, A.M. Glazer and H. Hauser (1975), Phil.Mag. 32, 471ADSCrossRefGoogle Scholar
  38. 39.
    I.T. Steinberger, J. Bordas, Z.H. Kalman (1977), PhilMag. 35, 1257Google Scholar
  39. 40.
    B.K. Tanner, M. Safa, D. Midgley and J. Bordas (1976), J.Magn.Mat. 1, 337ADSCrossRefGoogle Scholar
  40. 41.
    R.S. Sery, H.T. Savage, B.K. Tanner and G.F. Clark (1978), J.Appl.Phys. 49, 2010ADSCrossRefGoogle Scholar
  41. 42.
    G.F. Clark, B.K. Tanner, R.S. Sery and H.T. Savage (1979), J.de Physique 40, C5–183CrossRefGoogle Scholar
  42. 43.
    Y. Chikaura and B.K. Tanner (1979), Jap.J.Appl.Phys. 18, 1389ADSCrossRefGoogle Scholar
  43. 44.
    M. Safa and B.K. Tanner (1978), Phil.Mag. B37, 739CrossRefGoogle Scholar
  44. 45.
    J.D. Stephenson, V. Kelha, M. Tilli and T. Tuomi (1979), Phys.Stat.Sol. (a) 51, 93ADSCrossRefGoogle Scholar
  45. 46.
    T. Tuomi, J.D. Stephenson, M. Tilli and V. Kelha (1979), Phys.Stat.Sol. (a) 53, 571ADSCrossRefGoogle Scholar
  46. 47.
    J. Miltat and D.K. Bowen (1979), J. de Physique 40,389 49. L.J. Dijkstra and U.M. Martius (1953), Rev. Mod. Phys. 25–1 146Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. Miltat

There are no affiliations available

Personalised recommendations