Advertisement

Optical Constants of Insulators: Dispersion Relations

  • Manuel Cardona
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

The optical behavior of an optically isotropic solid (e.g., a cubic crystal) is determined by the spectral dependence of two parameters: the real and the imaginary part of the refractive index n = n r +in i (n i is usually referred to as k in the literature and called the extinction index), or the real and the imaginary part of the dielectric constant ε = ε r + i . The two spectral functions which determine the optical behavior are most readily determined by measuring the transmission and the reflection of a plane-parallel slab as a function of frequency [1]. In the region of interband transitions, however, the absorption coefficient reaches very large values (105−106 cm−1) and the preparation of single-crystal samples thin enough for transmission measurements becomes extremely difficult [2]. Because of the large number of imperfections associated with vacuum-deposited samples, thin films prepared by this method are not very trustworthy for optical measurements, although progress has been made recently by using epitaxial deposition methods [3]. Absorption in the substrate or film backing can also become a problem, especially in the far ultraviolet region, and therefore techniques based exclusively on reflection measurements have been most widely used for the determination of optical constants in the region of electronic interband transitions of metals, semiconductors, and insulators. The same considerations apply to the intraband (or free-carrier) absorption in metals [4], since the corresponding absorption coefficients are also very high.

Keywords

Dielectric Constant Dispersion Relation Half Plane Optical Constant Blaschke Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Moss, Optical Properties of Semiconductors, Butterworth’s Scientific Publications (London), 1959.Google Scholar
  2. 2.
    G. Harbeke, Z. Naturforsch. 19: 548 (1964).ADSGoogle Scholar
  3. 3.
    R. B. Schoolar and J. R. Dixon, Phys. Rev. 137: A667 (1965).ADSCrossRefGoogle Scholar
  4. M. Cardona and D. L. Greenaway, Phys. Rev. 133: A1685 (1964).ADSCrossRefGoogle Scholar
  5. 4.
    B. R. Cooper, H. Ehrenreich, and H. R. Phillipp, Phys. Rev. 138: A494 (1965).ADSCrossRefGoogle Scholar
  6. 5.
    D. G. Avery, Proc. Phys. Soc. B65: 425 (1952).Google Scholar
  7. 6.
    R. J. Archer, Phys. Rev. 110: 354 (1958).ADSCrossRefGoogle Scholar
  8. 7.
    H. A. Kramers, Atti del Congresso Internazionale dei Fisici, Sept. 1927, Como-PaviaRoma (Nicola Zanichelli, Bologna) 2: 545 (1928);Google Scholar
  9. R. de L. Kronig, J. Opt. Soc. Am. 12: 547 (1926).CrossRefGoogle Scholar
  10. 8.
    F. Stern, Solid State Physics, Vol. 15, in: F. Seitz and D. Turnbull (eds.), Academic Press (New York), 1963, p. 300.Google Scholar
  11. 9.
    J. S. Toll, Phys. Rev. 104: 1760 (1956).MathSciNetADSCrossRefGoogle Scholar
  12. 10.
    E. C. Titchmarsh, Theory of Fourier Integrals, Clarendon Press (Oxford), 1948 (second edition), pp. 119–128.Google Scholar
  13. 11.
    Y. Nishina, J. Kotodziejczak, and B. Lax, Phys. Rev. Letters 9:55 (1962). J. Kolodziejczak, B. Lax, and Y. Nishina, Phys. Rev. 128: 2655 (1962).MATHGoogle Scholar
  14. 12.
    B. Velicky, Czech.J. Phys. B11: 541 (1961).ADSCrossRefGoogle Scholar
  15. 13.
    H. R. Phillipp and E. A. Taft, Phys. Rev. 113: 1002 (1959);ADSCrossRefGoogle Scholar
  16. M. P. Rimmer and D. L. Dexter, J. Appl. Phys. 31: 775 (1960);ADSCrossRefGoogle Scholar
  17. T. S. Robinson, Proc. Phys. Soc. (London) B65: 910 (1952).Google Scholar
  18. M. Cardona and D.L. Greenaway, Phys. Rev. 133: A1685 (1964).ADSCrossRefGoogle Scholar
  19. 14.
    M. Cardona, J. Appl. Phys. 36: 2181 (1965).ADSCrossRefGoogle Scholar
  20. 15.
    B. O. Seraphin, “Electroreflectance,” in: Optical Properties of Solids, S. Nudelman and S. S. Mitra (eds.), Plenum Press (New York), 1968.Google Scholar
  21. 16.
    K. L. Shaklee, F. H. Pollak, and M. Cardona,Phys. Rev. Letters 15: 883 (1965).ADSCrossRefGoogle Scholar
  22. 17.
    M. Cardona, F. H. Pollak, and K. L. Shaklee, Phys. Rev. (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Manuel Cardona
    • 1
  1. 1.Physics DepartmentBrown UniversityProvidenceUSA

Personalised recommendations