New Phases at High Pressure

  • J. C. Joubert
  • J. Chenavas
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 5)


In spite of the considerable amount of work by Bridgman and co-workers on both applied and fundamental research in high-pressure physics from 1915 to 1945, the use of high pressure for the synthesis of new materials was more or less neglected by chemists. Perhaps because of the relative complexity of high-pressure equipment, they paid more attention to the role of high temperatures for the preparation of new phases. In the period from 1945 to 1955 geologists began to use high-pressure, high-temperature conditions in order to synthesize minerals encountered in volcanic rock whose origin was the deeper portions of the earth’s mantle (100–400 km). Only after 1955, the date of the announcement of the synthesis of diamond by the General Electric Co., did the advantages of using high-pressure conditions for the synthesis of new materials become evident to chemists. At that time many laboratories developed high-pressure facilities and chemists started to investigate pressure-temperature phase diagrams of the elements—more than forty years after the first synthesis of black phosphorus.(1,2) In several years a large number of new, denser phases of the elements were discovered. Some of the high-pressure phases had physical properties quite different from those of the ambient-pressure phases, e.g., high-pressure phases of silicon and germanium with the white tin structure were metallic and Bi II and III were both superconductors at low temperatures.


Boron Nitride Dense Phase Pyrochlore Structure High Oxygen Pressure Black Phosphorus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36, 1344–1363 (1914).Google Scholar
  2. 2.
    P. W. Bridgman, Further note on black phosphorus, J. Am. Chem. Soc. 38, 609–612 (1916).Google Scholar
  3. 3.
    Muller and R. Roy, Am. Ceram. Soc. Bull. 46, 881 (1967).Google Scholar
  4. 4.
    Muller and R. Roy, Preliminary study of new crystalline gold oxides, J. Inorg. Nucl. Chem. 31, 2966 (1969).Google Scholar
  5. 5.
    Muller and R. Roy, Formation and stability of the platinum and rhodium oxides at high oxygen pressures and the structures of Pt304, ßPtO2, and RhO2, J. Less Common Metals 16, 129–146 (1968).Google Scholar
  6. 6.
    W. B. White, High oxygen pressure, in Research Techniques for High Pressure and High Temperature (G. Ulmer, ed.), Chapter 4, Springer Verlag (1971).Google Scholar
  7. 7.
    R. Bougon, Private communication.Google Scholar
  8. 8.
    R. D. Shannon, Synthesis and properties of two members of the rutile family RhO2 and PtO2: Solid State Commun. 6, 139–143 (1968).Google Scholar
  9. 9.
    J. B. MacChesney, H. J. Williams, R. C. Sherwood, and J. F. Potter, Preparation and low temperature magnetic properties of terbium oxides, J. Chem. Phys. 44 (2), 596–601 (1966).Google Scholar
  10. 10.
    A. W. Sleight, New ternary oxides of tetravalent platinum and palladium with the pyrochlore structure, Mat. Res. Bull. 3, 699–704 (1968).Google Scholar
  11. 11.
    A. W. Sleight, New ternary oxides of mercury with the pyrochlore structure, Inorg. Chem. 7, 1704–1708 (1968).Google Scholar
  12. 12.
    J. B. MacChesney, J. F. Potter, R. C. Sherwood, and H. J. Williams, Oxygen stoichiometry in barium ferrates; its effect on magnetisation and resistivity, J. Chem. Phys. 43, 3317–3322 (1965).Google Scholar
  13. 13.
    J. B. MacChesney, H. J. Williams, J. F. Potter, and R. C. Sherwood, Magnetic study of the manganate phases: CaMnO3, Ca4Mn3O,0, Ca3Mn2O7, Ca2MnO4, Phys. Rev. 164 (2), 779–785 (1967).Google Scholar
  14. 14.
    A. Feretti, D. G. Wickham, and A. Wold, Induction heated pressure vessel for growing oxide single crystals, Rev. Sci. Instr. 32, 566–568 (1961).Google Scholar
  15. 15.
    P. W. Bridgman, The compression of 46 substances to 50,000 kg/cm2, Proc. Am. Acad. Arts Sci. 74, 21–51 (1940).Google Scholar
  16. 16.
    F. R. Boyd and J. L. England, Apparatus for phase-equilibrium measurements at pressures up to 50 kbar and temperatures up to 1750°C J. Geophys. Res. 65, 741–748 (1960).Google Scholar
  17. 17.
    H. T. Hall, Ultra high-pressure, high-temperature apparatus: the belt, Rev. Sci. Instr. 31, 125–131 (1960).Google Scholar
  18. 18.
    W. B. Daniels and M. T. Jones, Simple apparatus for the generation of pressure above 100,000 atmospheres simultaneously with temperatures above 3000°C, Rev. Sci. Instr. 32, 885 (1961).Google Scholar
  19. 19.
    L. F. Vereshchagin, V. A. Golaktionov, A. A. Smerchan, and V. N. Slesarev, Apparatus for high pressure and high temperature with a conical piston, Dokl. Akad. Nauk. SSSR 132(5) 1059–1061 (1960) [English transl.: Soviet Phys. Doklady 5 602 (1960)].Google Scholar
  20. 20.
    H. T. Hall, Some high pressure, high temperature design considerations, equipment for use at 100,000 atm and 3000°C, Rev. Sci. Instr. 29, 267–275 (1958).Google Scholar
  21. 21.
    E. C. Lloyd, U. O. Hutton, and D. P. Johnson, Compact multi-anvil wedge-type high pressure apparatus, J. Res. Natl. Bur. Std. 63 (C), 59–64 (1959).Google Scholar
  22. 22.
    L. F. Vereshagin, in Progress in Very High-Pressure Research (F. P. Bundy, W. R. Hibbard, and H. M. Strong, eds.), pp. 290–301, Wiley, New York (1961).Google Scholar
  23. 23.
    P. W. Bridgman, The resistance of 72 elements, alloys and compounds to 100,000 kg/cm2, Proc. Am. Acad. Arts Sci. 81, 165–251 (1952).Google Scholar
  24. 24.
    A. S. Balchan and H. G. Drickamer, High pressure electrical resistance cell and calibration points above 100 kilobars, Rev. Sci. Instr. 32, 308 (1961).Google Scholar
  25. 25.
    V. M. Goldschmidt, Skifter Norske Videnskaps Akad. Oslo, I: Mat. Naturv. K. 1926, 57–69.Google Scholar
  26. 26.
    I. Y. Borg and D. K. Smith, X-ray diffraction studies on CdTe at high pressure, J. Phys. Chem. Solids 28, 49–53 (1967).Google Scholar
  27. 27.
    A. N. Mariano and E. P. Warekois, Science 142, 672 (1963).Google Scholar
  28. 28.
    H. A. Gebbie, P. L. Smith, I. G. Austin, and J. H. King, Pressure dependence of resistivity of indium antimonide to 70,000 atmospheres, Nature. 188, 1095–1096 (1960).Google Scholar
  29. 29.
    S. M. Stishov and S. V. Popova, New dense polymorphic modification of silica, Geokhemiya 10 837–839 (1961) [English transl.: Geochemistry 10 923–926 (1961)].Google Scholar
  30. 30.
    D. P. Danderkar and J. C. Jamieson, Some high-pressure phases of RX2 fluorides, Trans. Am. Cryst. Assoc. 5, 19–27 (1969).Google Scholar
  31. 31.
    K. F. Seifert, Untersuchungen zur Druck-Kristallchemie der AX2 Verbindungen, Fortschr. der Mineral. Dtsch. 45 (2), 214–280 (1967).Google Scholar
  32. 32.
    R. D. Shannon and C. T. Prewitt, Coordination and volume changes accompanying high-pressure phase transformations of oxides, Mat. Res. Bull. 4, 57–62 (1969).Google Scholar
  33. 33.
    W. H. White, F. Dackille, and R. Roy, High-pressure, high-temperature polymorphism of the oxides of lead, J. Am. Ceram. Soc. 44 (4), 170–174 (1961).Google Scholar
  34. 34.
    A. E. Ringwood, The constitution of the mantle II. Further data on the olivine-spine! transition, Geochim. Cosmochim. Acta 15, 18–29 (1958); Am. Miner. 44 659–661 (1959).Google Scholar
  35. 35.
    A. E. Ringwood, Olivine-spinel transformation in cobalt orthosilicate, Nature 198, 79–80 (1963).Google Scholar
  36. 36.
    A. E. Ringwood, Olivine-spinel transformation in Fe2SiO4 and Ni2SiO4, Nature 187, 1019 (1960).Google Scholar
  37. 37.
    A. E. Ringwood, Prediction and confirmation of olivine-spinel transition in Ni2SiO4, Geochem. Cosmochim. Acta 26, 457–469 (1962).Google Scholar
  38. 38.
    M. Marezio, Oxides at high-pressure, Trans. Am. Cryst. Assoc. 5, 29–37 (1969).Google Scholar
  39. 39.
    W. Klement and A. Jayaraman, Phase relations and structures of solids at high pressures, in Progress in Solid State Chemistry Vol. 3, pp. 289–376, Pergamon (1966).Google Scholar
  40. 40.
    J. C. Jamieson, Science 139, 762 (1963).Google Scholar
  41. 41.
    G. L. Kulcinski, High-pressure induced phase transition in ZrO2, J. Am. Ceram. Soc. 51 (10), 582–584 (1968).Google Scholar
  42. 42.
    L. F. Vereshchagin, S. S. Kabalkina, and L. M. Lityagina, Effect of high pressure on the structure of tin oxide, Soviet Phys.—Doklady 10, 622–624 (1966).Google Scholar
  43. 43.
    S. S. Kabalkina and S. V. Popova, Phase transitions in zinc and manganese fluorides at high pressures and temperatures, Soviet Phys.—Doklady 8 (12), 1141–1143 (1964).Google Scholar
  44. 44.
    L. M. Azzaria and F. Dachille, High-pressure polymorphism of manganous fluorides, J. Phys. Chem. 65, 889–891 (1961).Google Scholar
  45. 45.
    L. F. Vereshchagin, S. S. Kabalkina, and A. A. Kotilevets, Phase transition in MnF2 at high pressure, Soviet Phys.—JETP 22, 1181–1184 (1966).Google Scholar
  46. 46.
    A. Jayaraman, Influence of pressure on phase transitions, in Annual Review of Materials Science, Vol. 2 (1972).Google Scholar
  47. 47.
    T. P. Ershova and E. T. Ponyatovskii, Dokl. Akad. Nauk SSSR 151 (6), 1364 (1963).Google Scholar
  48. 48.
    G. C. Kennedy, Phase relations in the system Al20,-H20 at high temperatures and pressures, Am. J. Science 257, 563–573 (1959).Google Scholar
  49. 49.
    G. Yamaguchi, H. Yanagida, and S. Ono, Condition of Tohdite 5Al2O3–H2O formation, J. Ceram. Assoc. Japan 74, 84–89 (1966).Google Scholar
  50. 50.
    H. T. Hall and L. A. Compton, Group IV analogs and high-pressure, high-temperature synthesis of B2O, Inorg. Chem. 4, 1213 (1965).Google Scholar
  51. 51.
    S. Somiya, S. Yamaoka, and S. Saito, Phase relation between CrO2 and Cr2O3 by decomposition of CrO3 under high oxygen pressure Preliminary report, Bull. Tokyo Inst. Technology 66, 81–84 (1965).Google Scholar
  52. 52.
    N. Kawai, A. Sawaska, S. Kikuchi, and N. Tamagawa, Reduction of CrO3 into CrO2 and Cr2O3 under very high pressure and high temperature, Japan J. Appl. Phys. 6 (12), 1397–1399 (1967).Google Scholar
  53. 53.
    R. C. De Vries, Stability of CrO2 at high pressures and temperatures in the belt apparatus, Mat. Res. Bull. 2, 999–1008 (1967).Google Scholar
  54. 54.
    Fukunaga, K. Takahaski, T. Fujita, and J. Yoshimoto, Phase equilibrium between MnO, and Mn2O3, Mat. Res. Bull. 4 (5), 315–322 (1969).Google Scholar
  55. 55.
    F. Kanamaru, H. Miyamoto, Y. Minomura, M. Koizumi, M. Shimad, and S. Kume, Synthesis of a new perovskite CzFeO3, Mat. Res. Bull. 5, 257–262 (1970).Google Scholar
  56. 56.
    G. Demazeau, A. Marbeuf, M. Pouchard, and P. Hagenmuller, Sur une série de composés oxygénés du nickel trivalent dérivés de la perovskite, J. Solid State Chem. 3, 582–589 (1971).Google Scholar
  57. 57.
    G. Demazeau, C. Parent, M. Pouchard, and P. Hagenmuller, Sur deux nouvelles phases oxygénées du cuivre trivalent LaCuO3 et La2Li0.50Cuo.„04., Mat. Res. Bull. 7, 913–920 (1972).Google Scholar
  58. 58.
    B. Chamberland and W. H. Cloud, Preparation and properties of NiCrO3, J. Appl. Phys. 41, 434–435 (1970).Google Scholar
  59. 59.
    Muller, R. Roy, and W. B. White, Phase equilibria in the systems NiO-Cr20302, MgO, Cr2O3–02 and CdO-Cr2O3–02 at high oxygen pressures, J. Am. Ceram. Soc. 51 (12), 693–699 (1968).Google Scholar
  60. 60.
    J. Chenavas, J. J. Capponi, and J. C. Joubert, to be published.Google Scholar
  61. 61.
    J. Chenavas, J. C. Joubert, and M. Marezio, Low spin–high spin state transition in high pressure cobalt sesquioxide, Solid State Commun. 9, 1057–1060 (1970).Google Scholar
  62. 62.
    H. R. Hoekstra and S. Siegel, Synthesis of thallium platinate at high pressure, Inorg. Chem. 7(1), 141–145 (1968).Google Scholar
  63. 63.
    Muller and R. Roy, in Advances in Chemistry, Vol. 98, pp. 28–37, Am. Chem. Society (1971).Google Scholar
  64. 64.
    Muller and R. Roy, Synthesis and crystal structure of Cd2PtO4, J. Less Common Metals 20, 161–163 (1970).Google Scholar
  65. 65.
    B. L. Chamberland, The preparation and crystallographic properties of BaCrO3 polytypes, Inorg. Chem. 8 (2), 286–290 (1969).Google Scholar
  66. 66.
    W. L. Roth and R. C. De Vries, Crystal and magnetic structure of PbCrO3, J. Appl. Phys. 38 (3), 951–952 (1967).Google Scholar
  67. 67.
    R. C. De Vries and W. L. Roth, High pressure synthesis of PbCrO3, J. Am. Ceram. Soc. 51 (2), 72–75 (1968).Google Scholar
  68. 68.
    B. L. Chamberland and C. W. Moeller, A study on the PbCrO3 perovskite, J. Solid State Chem. 5, 39–41 (1972).Google Scholar
  69. 69.
    J. B. Goodenough, J. M. Longo, and J. A. Kafalas, Band antiferromagnetism and the new perovskite CaCrO3, Mat. Res. Bull. 3, 471–482 (1968).Google Scholar
  70. 70.
    J. F. Weiher, B. L. Chamberland, and J. L. Gillson, Magnetic and electrical transport properties of CaCrO3, J. Solid State Chem. 3, 529–532 (1971).Google Scholar
  71. 71.
    B. L. Chamberland, Preparation and properties of SrCrO3, Solid State Commun. 5, 663–666 (1967).Google Scholar
  72. 72.
    J. A. Kafalas and J. M. Longo, High pressure synthesis of (ABX3)(AX)„ compounds; J. Solid State Chem. 4, 55–59 (1972).Google Scholar
  73. 73.
    B. L. Chamberland, A. W. Sleight, and J. F. Weiher, Preparation and characterization of BaMnO3 and SrMnO3 polytypes, J. Solid State Chem. 1, 506–511 (1970).Google Scholar
  74. 74.
    J. Chenavas, J. J. Capponi, J. C. Joubert, and M. Marezio, Synthèse de nouvelles phases denses d’oxyhydroxydes M3+OOH des métaux de la première série de transition, en milieu hydrothermal à très haute pression, J. Solid State Chem. 6, 1–15 (1973).Google Scholar
  75. 75.
    S. M. Stishov and N. V. Belov, Crystal structure of the new dense modification of silica, Dokl. Akad. Nauk SSSR, Geochem. 143, 146–148 (1962).Google Scholar
  76. 76.
    E. C. T. Chao, J. J. Fahey, J. Littler, and D. J. Milton, Stishovite SiO2 a very high pressure new mineral from meteor crater, Arizona, J. Geophys. Res. 67 (1), 419–421 (1962).Google Scholar
  77. 77.
    S. Akimoto and Y. Syono, Coesite—stishovite transition, J. Geophys. Res. 74 (6), 1653–1659 (1969).Google Scholar
  78. 78.
    A. E. Ringwood, A. Reid, and A. D. Wadsley, High pressure KAISi3O8 and aluminosilicate with sixfold coordination, Acta Cryst. 23, 1093–1095 (1967).Google Scholar
  79. 79.
    F. Dachille and R. Roy, A new high pressure form of B2O3 and inferences on cation coordination from infrared spectroscopy, J. Am. Ceram. Soc. 42 (2), 78–80 (1959).Google Scholar
  80. 80.
    C. T. Prewitt and R. D. Shannon, Crystal structure of a high-pressure form of B2O3, Acta Cryst. B24, 869–874 (1968).Google Scholar
  81. 81.
    M. Marezio, J. P. Remeika, and P. D. Dernier, The crystal structure of the high pressure CaB2O4 (III) and the crystal structure of the high pressure phase CaB2O4 (IV) and polymorphism in CaB2O4, Acta Cryst. B25, 955–970 (1969).Google Scholar
  82. 82.
    J. J. Capponi, J. Chenavas, and J. C. Joubert, Synthèse hydrothermale à très haute pression de deux borates de type olivine AIMgBO4 et FeNiBO4, Mat. Res. Bull. 8, 275–282 (1973).Google Scholar
  83. 83.
    S. Kume, T. Matsumoto, and M. Koizumi, J. Geophys. Res. 71, 4999 (1966).Google Scholar
  84. 84.
    A. E. Ringwood, A. F. Reid, and A. D. Wadsley, High pressure transformation of alkali aluminosilicates and aluminogermanates, Earth Planet. Sci. Letters 3, 38–40 (1967).Google Scholar
  85. 85.
    A. F. Reid, A. D. Wadsley, and A. E. Ringwood, High pressure NaAlGeO4, a calcium ferrite isotype and model structure for silicates at depth in the earth’s mantle, Acta Cryst. 23, 736–739 (1967).Google Scholar
  86. 86.
    A. D. Wadsley, A. F. Reid, and A. E. Ringwood, The high pressure form of MnGeO4, a member of the olivine group, Acta Cryst. B24, 740–742 (1968).Google Scholar
  87. 87.
    A. F. Reid and A. E. Ringwood, The crystal chemistry of dense M3O4 polymorphs high pressure Ca2GeO4 of K2NiO4 structure type, J. Solid State Chem. 1, 557–565 (1970).Google Scholar
  88. 88.
    R. D. Shannon and A. W. Sleight, Synthesis of new high pressure pyrochlore phases, Inorg. Chem. 7 (8), 1649–1651 (1968).Google Scholar
  89. 89.
    A. E. Ringwood and M. Seabrook, High pressure phase transformations in germanate pyroxenes and related compounds, J. Geophys. Res. 8 (15), 4601–4609 (1963).Google Scholar
  90. 90.
    A. E. Ringwood and A. Major, Some high pressure transformations of geophysical significance, Earth Planet. Sci. Letters 2, 106–110 (1967).Google Scholar
  91. 91.
    C. T. Prewitt and A. W. Sleight, Garnet-like structures of high pressure cadmium germanate, Science 163, 386–389 (1969).Google Scholar
  92. 92.
    Y. Shimizu, Y. Syono, and S. Akimoto, High pressure transformations in SrGeO3, SrSiO3, BaGeO3 and BaSiO3, High Temp. High Press. 2, 113–120 (1970).Google Scholar
  93. 93.
    A. Sawaoka, S. Miyahara, S. Akimoto, and H. Fujisawa, Magnetic properties of manganese-iron and manganese-cobalt germanate having ilmenite structure, J. Phys. Soc. Japan 19, 1750–1751 (1964).Google Scholar
  94. 94.
    J. Liebertz and C. J. Rooymans, Die ilmenit/perowskit-Phasenumwandlung von CdTiO3 unter hohem druck, Z. phys. Chem. Neue Folge 44, 242–249 (1965).Google Scholar
  95. 95.
    Y. Syono, S. Akimoto, and Y. Endoh, High pressure synthesis of ilmenite and perovskite type MnVO3 and their magnetic properties, J. Phys. Chem. Solids 32, 243–249 (1971).Google Scholar
  96. 96.
    A. Waintal and J. Chenavas, Transformation sous haute pression de la forme hexagonale de MnT’O3 (T’ = Ho, Er, Tm, Yb, Lu) en une forme perovskite, Mat. Res. Bull. 2, 819–822 (1967).Google Scholar
  97. 97.
    A. E. Ringwood and A. F. Reid, High pressure transformations of spinels, Earth Planet. Sci. Letters 5, 245–250 (1969).Google Scholar
  98. 98.
    A. F. Reid and A. E. Ringwood, Newly observed high-pressure transformations in Mn3O4, CaAl2O4 and ZrSiO4, Earth Planet. Sci. Letters 6, 205–208 (1969).Google Scholar
  99. 99.
    V. E. Stubican and R. Roy, High pressure schellite-structure polymorphs of rare-earth vanadates and arsenates, Z. Krist. 119, 90–97 (1963).Google Scholar
  100. 100.
    J. M. Longo and J. A. Kafalas, The effect of pressure and B-cation size on the crystal structure of CsBF3 compounds (B = Mn, Fe, Co, Ni, Zn, Mg), J. Solid State Chem. 1, 103–108 (1969).Google Scholar
  101. 101.
    Y. Syono, S. Akimoto, and K. Kohn, Structure relations of hexagonal perovskitelike compounds ABX3 at high pressure, J. Phys. Soc. Japan 26 (4), 993–999 (1969).Google Scholar
  102. 102.
    J. M. Longo and J. A. Kafalas, Pressure-induced structural changes in the system Ba 1 _xSrxRuO3, Mat. Res. Bull. 3, 687–692 (1968).Google Scholar
  103. 103.
    J. M. Longo, J. A. Kafalas, N. Menyuk, and K. Dwight, High pressure RbFeC13. A transparent ferrimagnet, J. Appl. Phys. 42 (4), 1561–1562 (1971).Google Scholar
  104. 104.
    J. M. Longo and J. A. Kafalas, Effect of pressure on the crystal structure of CsMnCl3 and RbMnC13, J. Solid State Chem. 3, 429–433 (1971).Google Scholar
  105. 105.
    R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Cryst. B25(5), 925–945 (1969).Google Scholar
  106. 106.
    R. D. Shannon and C. T. Prewitt, Revised values of effective ionic radii, Acta Cryst. B26, 1046–1047 (1970).Google Scholar
  107. 107.
    A. N. Christensen, R. Gronbaek, and S. E. Rasmussen, The crystal structure of InOOH, Acta Chem. Scand. 18, 1261–1266 (1964).Google Scholar
  108. 108.
    M. S. Lehmann, F. K. Larsen, F. R. Poulsen, A. N. Christensen, and S. E. Rasmussen, Neutron and X-ray crystallographic studies on indium oxide hydroxide, Acta Chem. Scand. 24, 1662 (1970).Google Scholar
  109. 109.
    S. Akimoto and Y. Syono, High pressure decomposition of some titanate spinels, J. Chem. Phys. 47, 1813 (1967).Google Scholar
  110. 110.
    A. F. Reid, Private communication.Google Scholar
  111. 111.
    M. Marezio, J. P. Remeika, and A. Jayaraman, High pressure decomposition of synthetic garnets, J. Chem. Phys. 45, 1821–1824 (1966).Google Scholar
  112. 112.
    M. Marezio, J. P. Remeika, and P. D. Dernier, High pressure synthesis of YGaO3, GdGaO3 and YbGaO3, Mat. Res. Bull. 1, 247–255 (1966).Google Scholar
  113. 113.
    K. H. Kim and F. A. Hummel, Private communication, quoted by E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists, p. 121, The American Ceramic Society (1964).Google Scholar
  114. 114.
    J. J. Capponi, J. Chenavas, and J. C. Joubert, Nouveaux borates d’aluminium et de gallium obtenus par synthèse hydrothermale à haute pression, Bull. Soc. fr. Minéral. Cristallogr. 95, 412–417 (1972).Google Scholar
  115. 115.
    G. G. Uvazov, E. I. Speranskaya, and Z. F. Gulyanitskaya, Zh. Neorg. Khim. 1 (6), 1414 (1956).Google Scholar
  116. 116.
    F. Sugawara, Y. Syono, and S. Akimoto, High pressure synthesis of a new perovskite PbSnO3, Mat. Res. Bull. 3, 529–532 (1968).Google Scholar
  117. 117.
    Y. Syono, H. Sawamoto, and S. Akimoto, Disordered ilmenite MnSnO3 and its magnetic property, Solid State Commun. 7, 713–716 (1969).Google Scholar
  118. 118.
    D. H. Lindsley, T. C. Davis, and I. D. MacGregor, Ferrosilite (FeSiO3): synthesis at high pressures and high temperature, Science 144 (3614), 73–74 (1964).Google Scholar
  119. 119.
    F. Sugawara and S. Iida, New magnetic perovskites BiMnO3 and BiCrO3, J. Phys. Soc. Japan 20, 1529 (1965).Google Scholar
  120. 120.
    Y. Y. Tomashpol’skii, E. V. Zubova, K. P. Burdina, and Y. N. Venevtsev, X-ray diffraction study of the ferroelectric and ferromagnetic materials BiMnO3, BiCrO3 and their solid solutions obtained, at high pressures, Izv. Akad. Nauk SSSR, Neorg. Mat. 3 (11), 2132–2134 (1967).Google Scholar
  121. 121.
    B. L. Chamberland, The synthesis of new ilmenite-type derivates, CuVO3 and CoVO3, J. Solid State Chem.. 1, 138–142 (1970).Google Scholar
  122. 122.
    B. L. Chamberland, A. W. Sleight, and J. F. Weiher, Preparation and Characterization of MgMnO3 and ZnMnO3, J. Solid State Chem. 1, 512–514 (1970).Google Scholar
  123. 123.
    T. Noda and M. Ushio, High pressure synthesis and stability field of cobalt garnet (Co3Al2Si3O12), J. Ceram. Assoc. Japan 75 (5), 125–135 (1967).Google Scholar
  124. 124.
    R. D. Shannon, Synthesis of some new perovskites containing indium and thallium, Inorg. Chem. 6, 1474–1478 (1967).Google Scholar
  125. 125.
    A. W. Sleight and C. T. Prewitt, Preparation of CuNbO3 and CuTaO3 at high pressure, Mat. Res. Bull. 5, 207–212 (1970).Google Scholar
  126. 126.
    B. L. Chamberland, A. W. Sleight, and W. Cloud, The preparation and properties of rutile-type transition metal oxyfluorides, J. Solid State Chem. 2, 49–54 (1970).Google Scholar
  127. 127.
    B. L. Chamberland, A new oxyfluoride perovskite, KTiO2F, Mat. Res. Bull. 6, 311–316 (1971).Google Scholar
  128. 128.
    T. Katsura, B. Iwasaki, S. Kimura, and S. Akimoto, High-pressure synthesis of the stoichiometric compound FeO, J. Chem. Phys. 47 (11), 4559–4560 (1967).Google Scholar
  129. 129.
    A. Neuhaus and R. Steffen, Über das Zustands-und Mischbarkeitsverhalten des Systems ZnS-MnS im Druckbereich bis 140 kbar, Z. Phys. Chem. Neue Folge 73, 188–214 (1970).Google Scholar
  130. 130.
    A. Neuhaus and L. Cemie, Struktur und Mischbarkeit im System ZnS-FeS im Druckbereich bis 60 kbar, Naturwiss. 57 (7), 354–355 (1970).Google Scholar
  131. 131.
    K. J. Range, G. Engert, and A. Weiss, High-pressure transformations of ternary chalcogenides with chalcopyrite structure. I. Indium-containing compounds, Solid State Commun. 7, 1749–1752 (1969).Google Scholar
  132. 132.
    H. Katzman, T. Donohue, W. F. Libby, H. L. Luo, and J. G. Huber, A high-pressure superconducting polymorph of cadmium tin diarsenide, J. Phys. Chem. Solids 30, 1609–1611 (1969).Google Scholar
  133. 133.
    H. Katzman, T. Donohue, W. F. Libby, and H. L. Luo, A high-pressure superconducting polymorph of cadmium germanium diarsenide, J. Phys. Chem. Solids 30, 2794–2795 (1969).Google Scholar
  134. 134.
    W. Albers and C. J. Rooymans, High-pressure polymorphism of spinel compound, Solid State Comm. 3, 417–419 (1965).Google Scholar
  135. 135.
    P. C. Donohue, High-pressure syntheses and properties of CoP2 and MnCoP4, Mat. Res. Bull. 7, 943–948 (1972).Google Scholar
  136. 136.
    M. Wakatsuki, K. Ichinose, and T. Aoki, Synthesis of polycrystalline cubic BN, Mat. Res. Bull. 7, 999–1004 (1972).Google Scholar
  137. 137.
    E. D. Whitney and R. F. Giese, Preparation of a new ternary lithium silicon nitride, LiSi2N3, and the high pressure synthesis of magnesium silicon nitride, MgSiN2, Inorg. Chem. 10 (5), 1090–1091 (1971).Google Scholar
  138. 138.
    R. C. de Vries and J. F. Flei, The system Li3BN2 at high pressures and temperatures, Mat. Res. Bull. 4, 433 (1969).Google Scholar
  139. 139.
    H. T. Hall, High pressure syntheses involving rare earths, Rev. Phys. Chem. Japan 39 (2), 110–116 (1969).Google Scholar
  140. 140.
    Q. Johnson, The crystal structure of high pressure synthesized holmium diantimonide, Inorg. Chem. 10 (9), 2089–2090 (1971).Google Scholar
  141. 141.
    R. Wang and H. Steinfink, The crystal chemistry of selected AB2 rare earth compounds with selenium, tellurium and antimony, Inorg. Chem. 6, 1685 (1967).Google Scholar
  142. 142.
    P. W. Bridgman, The effect of pressure on the bismuth—tin system, Bull. Soc. Chem. Belge 62 (1 2), 26–33 (1963).Google Scholar
  143. 143.
    P. W. Bridgman, The effect of pressure on several properties of the alloys of bismuth—tin and of bismuth—cadmium, Proc. Am. Acad. Arts Sci. 82 (1–2), 101–156 (1953).Google Scholar
  144. 144.
    D. L. Robertson, J. F. Cannon, and H. T. Hall, High-pressure and high-temperature synthesis of LaCo2, Mat. Res. Bull. 7, 977–982 (1972).Google Scholar
  145. 145.
    J. F. Cannon, D. L. Robertson, and H. T. Hall, Synthesis of lanthanide—iron Laves phases at high pressures and temperatures, Mat. Res. Bull. 7, 5–12 (1972).Google Scholar
  146. 146.
    M. C. Krupka and M. G. Bowman, New high-pressure phase transformations in rare earth and actinide carbide systems, in Propriétés Physiques des Solides sous Pression, pp. 409–414, Edition du CNRS, Paris (1970).Google Scholar
  147. 147.
    M. C. Krupka, A. L. Giorgi, N. H. Krikorian, and E. G. Szklarz, High-pressure synthesis and superconducting properties of yttrium sesquicarbide, J. Less Common Metals 17, 91–98 (1969).Google Scholar
  148. 148.
    M. C. Krupka, A. L. Giorgi, N. H. Krikorian, and E. G. Szklarz, High-pressure synthesis of yttrium—thorium sesquicarbide: a new high-temperature superconductor, J. Less Common Metals 19, 113–119 (1969).Google Scholar
  149. 149.
    M. C. Krupka, High-pressure synthesis of thorium sesquicarbide: a new actinide carbide, J. Less Common Metals 20, 135–140 (1970).Google Scholar
  150. 150.
    S. V. Popova and L. G. Boiko, A new rhenium carbide formed by high pressure treatment, High Temp. High Press. 3, 237–238 (1971).Google Scholar
  151. 151.
    E. G. Ponyatovskii, Phase transformation of the alloy 50 at. % Bi-50 at. % Sn under high constriction pressures, Phys. Metals Metallogr. 16, 119–120 (1963).Google Scholar
  152. 152.
    E. G. Ponyatovskii, P.T.C. phase diagram of bismuth—tin alloys, Dokl. USSR Chem. Sect. 159, 1374 (1964).Google Scholar
  153. 153.
    E. G. Ponyatovskii, Private communication, Grenoble (1972).Google Scholar
  154. 154.
    M. D. Banus, T. B. Reed, H. C. Gatos, M. C. Lavine, and J. A. Kafalas, Nb3In: A ß tungsten structure superconducting compound, J. Phys. Chem. Solids 23, 971 (1962).Google Scholar
  155. 155.
    H. M. Strong, Further studies on diamond growth rates and physical properties of man-made diamond, in Symp. on Rate Processes at High Pressure, Chemical Institute of Canada, American Chemical Society, Toronto, Ontario, May 28, 1970.Google Scholar
  156. 156.
    H. M. Strong, Variation with pressure of the nickel—carbon eutectic, Acta Met. 121411–1419(1964).Google Scholar
  157. 157.
    H. M. Strong and R. E. Hanneman, Crystallization of diamond and graphite, J. Chem. Phys. 46, 3668–3676 (1967).Google Scholar
  158. 158.
    F. P. Bundy, Direct conversion of graphite to diamond in static pressure apparatus, Science 137, 1057 (1962); J. Chem. Phys. 38, 631–643 (1963).Google Scholar
  159. 159.
    R. H. Wentorf, Some studies of diamond growth rates, J. Phys. Chem. 75 (12), 1833–1837 (1971).Google Scholar
  160. 160.
    R. H. Wentorf, Cubic form of boron nitride, J. Chem. Phys. 26, 956 (1957).Google Scholar
  161. 161.
    R. H. Wentorf, Synthesis of the cubic form of boron nitride, J. Chem. Phys. 34, 809 (1961).Google Scholar
  162. 162.
    R. H. Wentorf, Preparation of simiconducting cubic boron nitride, J. Chem. Phys. 36, 1990–1991 (1962).Google Scholar
  163. 163.
    F. P. Bundy and R. H. Wentorf, Direct transformation of hexagonal boron nitride, J. Chem. Phys. 38, 1144 (1963).Google Scholar
  164. 164.
    R. C. de Vries and J. F. Fleischer, Phase equilibria pertinent to the growth of cubic boron nitride, J. Crystal Growth 13/14, 88–92 (1972).Google Scholar
  165. 165.
    J. Akella, S. N. Vaidya, and G. C. Kennedy, Melting of sodium chloride at pressures to 65 kbar, Phys. Rev. 185 (3), 1135–1140 (1969).Google Scholar
  166. 166.
    M. Marezio and J. P. Remeika, Polymorphism of LiMO2 compounds and high-pressure single crystal synthesis of LiBO2, J. Chem. Phys. 44 (9), 3348–3353 (1966).Google Scholar
  167. 167.
    S. P. Clark, Effect of pressure on the melting points of eight alkali halides, J. Chem. Phys. 31, 1526–1531 (1959).Google Scholar
  168. 168.
    J. P. Remeika and M. Marezio, Growth of a-Ga2O3 single crystal at 44 kbar, Appl. Phys. Letters 8 (4), 87–88 (1966).Google Scholar
  169. 169.
    K. H. Dudziak and E. U. Franck, Ber. Bunsenges. Phys. Chem. 70, 1120 (1966).Google Scholar
  170. 170.
    E. A. Binges and M. R. Gibson, Dynamic viscosity of compressed water to 10 kilobar and steam to 1500°C, J. Mech. Engng. Sci. 11, 189–205 (1969).Google Scholar
  171. 171.
    E. U. Franck, Water and aqueous solutions at high pressures and temperatures, Pure Appl. Chem. 24, 13–30 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • J. C. Joubert
    • 1
  • J. Chenavas
    • 1
  1. 1.Laboratoire de Rayons XCNRSGrenobleFrance

Personalised recommendations