Transitions in Viscous Liquids and Glasses

  • David Turnbull
  • Brian G. Bagley
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 5)


This chapter surveys transitions between the viscous liquid state and the glass, phase-separated, or crystalline states and some of the uses of these transitions in altering the structure and properties of solids. In addition to its intrinsic interest, the liquid ↔ glass transition is important for kinetically limiting the other two types of transition. It is these limiting effects which make possible the formation of quite unique structures in the transitions. We will begin by reviewing the liquid ↔ glass transition.


Glass Transition Viscous Liquid Crystallization Kinetic Chalcogenide Glass Memory Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. U. Condon, Physics of the glassy state. I. Constitution and structure, Am. J. Phys. 22, 43–53 (1954).CrossRefGoogle Scholar
  2. 2.
    W. Kauzman, The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 43, 219–256 (1948).CrossRefGoogle Scholar
  3. 3.
    G. Hetherington, K. J. Jack, and J. C. Kennedy, The viscosity of vitreous SiO2, Phys. Chem. Glasses 5, 130–136 (1964).Google Scholar
  4. 4.
    C. R. Kurkjan and R. W. Douglas, The viscosity of glasses in the system Na2O-GeO2, Phys. Chem. Glasses 1, 19–25 (1960).Google Scholar
  5. 5.
    J. P. De Neufville, C. H. Drummond III, and D. Turnbull, The effect of excess Ge on the viscosity of GeO2, Phys. Chem. Glasses 11, 186–191 (1970).Google Scholar
  6. 6.
    S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, pp. 477–551, McGraw-Hill, New York (1941).Google Scholar
  7. 7.
    R. B. Sosman, Properties of Fused SiO 2, p. 313, Chem. Catalog Corp., New York (1927).Google Scholar
  8. 8.
    K. K. Kelley and A. U. Christensen, U.S. Bur. Mines, R.I. 5710 (1961).Google Scholar
  9. 9.
    R. Bruckner, Properties and structure of vitreous SiO2, J. Non-Crystalline Solids 5, 123–216 (1970).CrossRefGoogle Scholar
  10. 10.
    D. E. Polk and D. Turnbull, Structure of amorphous semiconductors, J. Non-Crystalline Solids 810, 19–35 (1972).Google Scholar
  11. 11.
    H. Vogel, Das Temperaturabhängigkeitsgesetz auf die Viscositat von Flussigkeiten, Phys. Z. 22, 645–646 (1921).Google Scholar
  12. 12.
    G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceramic Soc. 6, 339 (1925).CrossRefGoogle Scholar
  13. 13.
    M. H. Cohen and D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 31, 1164–1169 (1959).CrossRefGoogle Scholar
  14. 14.
    M. Cukierman, J. W. Lane, and D. R. Uhlmann, High temperature flow behavior of glass-forming liquids: A free volume interpretation, J. Chem. Phys. 59, 3639–3644 (1973).CrossRefGoogle Scholar
  15. 15.
    M. L. Williams, R. F. Landel, and J. D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77, 3701–3707 (1955).CrossRefGoogle Scholar
  16. 16.
    W. T. Laughlin and D. R. Uhlmann, Viscous flow in simple organic liquids, J. Phys. Chem. 76, 2317–2325 (1972).CrossRefGoogle Scholar
  17. 17.
    J. H. Gibbs and E. A. DiMarzio, Nature of the glass transition and the glassy state, J. Chem. Phys. 28, 373–383 (1958).CrossRefGoogle Scholar
  18. 18.
    D. Turnbull and M. H. Cohen, On the free volume model of the liquid—glass transition, J. Chem. Phys. 52, 3038–3041 (1970).CrossRefGoogle Scholar
  19. 19.
    F. Bueche, Mobility of molecules in liquids near the glass temperature, J. Chem. Phys. 30, 748–752 (1959).CrossRefGoogle Scholar
  20. 20.
    B. J. Alder, W. G. Hoover, and D. A. Young, Studies in molecular dynamics. V. High density equation of state and entropy for hard discs and spheres, J. Chem. Phys. 49, 3688–3696 (1968).CrossRefGoogle Scholar
  21. 21.
    M. H. Cohen and D. Turnbull, Metastability of amorphous structures, Nature 203, 964 (1964).CrossRefGoogle Scholar
  22. 22.
    B. J. Alder, D. M. Gass, and T. E. Wainwright, Studies in molecular dynamics. VIII. The transport coefficients for a hard sphere fluid, J. Chem. Phys. 53, 3813–3826 (1970).CrossRefGoogle Scholar
  23. 23.
    D. Weaire, M. F. Ashby, J. Logan, and M. J. Weins, On the use of pair potentials to calculate the properties of amorphous metals, Acta Met. 19, 779–788 (1971).CrossRefGoogle Scholar
  24. 24.
    E. J. Le Fevre, Equation of state for hard-sphere fluid, Nature, Phys. Sci. 235, 20 (1972).Google Scholar
  25. 25.
    J. H. Dymond and B. J. Alder, Van der Waals theory of transport in dense fluids, J. Chem. Phys. 45, 2061–2068 (1966).CrossRefGoogle Scholar
  26. 26.
    G. Adam and J. H. Gibbs, On the temperature dependence of Cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965).CrossRefGoogle Scholar
  27. 27.
    H. S. Chen and D. Turnbull, Evidence of a glass-liquid transition in a Au-Ge-Si Alloy, J. Chem. Phys. 48, 2560 (1968).CrossRefGoogle Scholar
  28. 28.
    G. C. Berry and T. G. Fox, The viscosity of polymers and their concentrated solutions, Adv. Polymer Sci. 5, 261–357 (1968).CrossRefGoogle Scholar
  29. 29.
    C. A. Angell and K. J. Rao, Configurational excitations in condensed matter and the bond-lattice model for the glass Transition, J. Chem. Phys. 57, 470–481 (1972).CrossRefGoogle Scholar
  30. 30.
    M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51, 3728–3739 (1969).CrossRefGoogle Scholar
  31. 31a.
    N. Hirai and H. Eyring, Bulk viscosity of polymeric systems, J. Polymer Sci. 37, 51–70 (1959).CrossRefGoogle Scholar
  32. 31b.
    N. Hirai, Liquid viscosity near the glass transition temperature, Rep. Surface Sci. 2, 51 (1962).Google Scholar
  33. 32.
    J. W. Cahn, Spinodal decomposition, Trans. Met. Soc. AIME 242, 166–180 (1968).Google Scholar
  34. 33.
    J. E. Hilliard, Spinodal decomposition, in Phase Transformations, pp. 497–560, Am. Soc. Metals, Metals Park, Ohio (1970).Google Scholar
  35. 34.
    R. D. Maurer, Crystallization of a titania-nucleated glass, in Symposium on Nucleation and Crystallization in Glasses and Melts (Reser, Smith, and Insley, eds.), pp. 5–9, Am. Ceramic Soc., Columbus, Ohio (1962).Google Scholar
  36. 35.
    J. E. Morrai, Ph.D. Thesis, Dept. of Mat. Sci., M.I.T. (1968); J. E. Morrai, Stability limits for ternary systems, Acta Met. 20, 1061–1076 (1972).CrossRefGoogle Scholar
  37. 36.
    D. Turnbull, Under what conditions can a glass be formed, Contemporary Physics 10, 473–488 (1969).CrossRefGoogle Scholar
  38. 37.
    W. B. Hillig and D. Turnbull, Theory of crystal growth in undercooled pure liquids, J. Chem. Phys. 24, 914 (1956).CrossRefGoogle Scholar
  39. 38.
    D. Turnbull and M. H. Cohen, Crystallization kinetics and glass formation, in Modern Aspects of the Vitreous State (J. D. MacKenzie, ed.), 1, pp. 38–62, Butterworth’s, London (1960).Google Scholar
  40. 39.
    K. A. Jackson, Nature of solid—liquid interfaces, in Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts, and D. Turnbull, eds.), pp. 319–325, Wiley, New York (1958).Google Scholar
  41. 40.
    K. A. Jackson, D. R. Uhlmann, and J. D. Hunt, On the nature of crystal growth from the melt, J. Crystal Growth 1, 1–36 (1967).CrossRefGoogle Scholar
  42. 41.
    W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. Roy. Soc. (London) 243, 299–358 (1951).CrossRefGoogle Scholar
  43. 42.
    J. W. Cahn, Theory of crystal growth and interface motion in crystalline materials, Acta Met. 8, 554–562 (1960).CrossRefGoogle Scholar
  44. 43.
    K. A. Jackson, Theory of crystal growth, this volume, Chapter 5.Google Scholar
  45. 44.
    D. Turnbull, On the relation between crystallization rate and liquid structure, J. Phys. Chem. 66, 609–613 (1962).CrossRefGoogle Scholar
  46. 45.
    D. Turnbull, Amorphous solid formation and interstitial solution behavior in metallic systems, Proceedings of Conference on Disordered Systems (Strasbourg, 1973), J. de Physique 35, colloque-4, C4. 1–4. 9 (1974).Google Scholar
  47. 46.
    J. L. Walker, reported by B. Chalmers, Principles of Solidification, pp. 114–116, Wiley, New York (1964).Google Scholar
  48. 47.
    N. G. Ainslie, C. R. Morelock, and D. Turnbull, Devitrification kinetics of fused silica, in Symposium on Nucleation and Crystallization in Glasses and Melts (M. K. Reser, G. Smith, and H. Insley, eds.), pp. 97–107, Am. Ceram. Soc., Columbus, Ohio (1962).Google Scholar
  49. 48.
    R. C. Keezer and M. W. Bailey, The structure of liquid Se from viscosity measurements, Mat. Res. Bull. 2, 185–192 (1967).CrossRefGoogle Scholar
  50. 49.
    P. J. Vergano and D. R. Uhlmann, Crystallization kinetics of GeO2; the effects of stoichiometry on kinetics, Phys. Chem. Glasses 11, 30–38 (1970).Google Scholar
  51. 50.
    D. R. Uhlmann, J. F. Hays, and D. Turnbull, The effect of high pressure on crystallization kinetics with special reference to fused silica, Phys. and Chem. Glasses 7, 159–168 (1966).Google Scholar
  52. 51.
    J. D. MacKenzie and W. F. Claussen, Crystallization and phase relations of B2O3 at high pressures, J. Am. Ceram. Soc. 44, 79–81 (1961).CrossRefGoogle Scholar
  53. 52.
    D. R. Uhlmann, J. F. Hays, and D. Turnbull, The effect of high pressure on BZO3: crystallization, densification and the crystallization anomaly, Phys. Chem. Glasses 8, 1–10 (1967).Google Scholar
  54. 53.
    O. Shimomura, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, J. Fukushima, and H. Endo, Pressure-induced semiconductor-metal transitions in amorphous Si and Ge, Phil. Mag. 29, 547–558 (1974).CrossRefGoogle Scholar
  55. 54.
    The Ad Hoc Committee on the Fundamentals of Amorphous Semiconductors, Fundamentals of Amorphous Semiconductors,National Academy of Sciences-National Academy of Engineering Publication NMAB-284 (September 1971).Google Scholar
  56. 55.
    D. Adler, Amorphous semiconductors, CRC Crit. Rev. Solid State Sci. 2, 317–465 (1971).CrossRefGoogle Scholar
  57. W. Doremus, ed., Proceedings of the symposium on semiconductor effects in Amorphous solids, New York, May 1969, J. Non-Cryst. Solids 2 (1970).Google Scholar
  58. Sir Neville Mott, ed., Proceedings of the international conference on amorphous and liquid semiconductors, Cambridge, Sept. 1969, J. Non-Cryst. Solids 4 (1970).Google Scholar
  59. M. H. Cohen and G. Lucovsky, eds., Proceedings of the fourth international conference on amorphous and liquid semiconductors, Ann Arbor, August 1971, J. Non-Cryst. Solids 8–10 (1972).Google Scholar
  60. 59.
    Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors,Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Taylor and Francis, Ltd., London (1974).Google Scholar
  61. 60.
    H. Fritzsche, Switching and memory in amorphous semiconductors, in Amorphous and Liquid Semiconductors (J. Tauc, ed.), Chapter 6, pp. 313–359, Plenum Press, New York (1974).CrossRefGoogle Scholar
  62. 61.
    A. D. Pearson, Memory and switching in semiconducting glasses, a review, J. Non-Cryst. Solids 2, 1–15 (1970).CrossRefGoogle Scholar
  63. 62.
    S. R. Ovshinsky, An introduction to ovonic research, J. Non-Cryst. Solids 2, 99–106 (1970).CrossRefGoogle Scholar
  64. 63.
    P. J. Walsh, R. Vogel, and E. J. Evans, Conduction and electrical switching in amorphous chalcogenide semiconductor films, Phys. Rev. 178, 1274–1279 (1969).CrossRefGoogle Scholar
  65. 64.
    E. A. Fagen and H. Fritzsche, Electrical conductivity of amorphous chalcogenide alloy films, J. Non-Cryst. Solids 2, 170–179 (1970).CrossRefGoogle Scholar
  66. 65.
    J. M. Robertson and A. E. Owen, Electronically-assisted thermal breakdown in chalcogenide glasses, J. Non-Cryst. Solids 8–10, 439–444 (1972).CrossRefGoogle Scholar
  67. 66.
    S. R. Ovshinsky, Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21, 1450–1453 (1968).CrossRefGoogle Scholar
  68. 67.
    B. T. Kolomiets, E. A. Lebedev, and I. A. Taksami, Mechanism of the breakdown in films of glassy chalcogenide semiconductors, Soviet Phys.—Semiconductors 3, 267–268 (1969).Google Scholar
  69. 68.
    R. R. Shanks, Ovonic threshold switching characteristics, J. Non-Cryst. Solids 2, 504–514 (1970).CrossRefGoogle Scholar
  70. 69.
    K. Tanaka, S. Iizima, M. Sugi, Y. Okada, and M. Kikuchi, Thermal effect on switching phenomenon in chalcogenide amorphous semiconductors, Solid State Commun. 8, 387–389 (1970).CrossRefGoogle Scholar
  71. 70.
    M. Sugi, M. Kikuchi, I. Iizima, and K. Tanaka, Switching characteristics of chalcogenide glass, Solid State Commun. 7, 1805–1807 (1969).CrossRefGoogle Scholar
  72. 71.
    D. R. Haberland, Ladungsbedingter Schaltmechanismus in Glashalbleitern, Solid-State Electronics 13, 207–217 (1970).CrossRefGoogle Scholar
  73. 72.
    D. R. Haberland and H. Stiegler, New experiments on the charge-controlled switching effect in amorphous semiconductors, J. Non-Cryst. Solids 8–10, 408–414 (1972).CrossRefGoogle Scholar
  74. 73.
    A. Csillag and H. Jäger, Energy-controlled switching process in the amorphous system Te–As–Ge–Si, J. Non-Cryst. Solids 2, 133–140 (1970).CrossRefGoogle Scholar
  75. 74.
    I. Balberg, Simple test for double injection initiation of switching, Appl. Phys. Lett. 16, 491–493 (1970).CrossRefGoogle Scholar
  76. 75.
    H. K. Henisch and R. W. Pryor, On the mechanism of ovonic threshold switching, Solid-State Electronics 14, 765–774 (1971).CrossRefGoogle Scholar
  77. 76.
    R. W. Pryor and H. K. Henisch, Nature of the on-state in chalcogenide glass threshold switches, J. Non-Cryst. Solids 7, 181–191 (1972).CrossRefGoogle Scholar
  78. 77.
    H. K. Henisch and G. J. Vendura, Jr., Characteristics of ovonic threshold switches with crystalline semiconductor electrodes, Appl. Phys. Lett. 19, 363–365 (1971).CrossRefGoogle Scholar
  79. 78.
    H. K. Henisch, R. W. Pryor, and G. J. Vendura, Jr., Characteristics and mechanism of threshold switching, J. Non-Cryst. Solids 8–10, 415–421 (1972).CrossRefGoogle Scholar
  80. 79.
    G. J. Vendura, Jr., and H. K. Henisch, Behavior of amorphous semiconductor films between asymmetric electrodes, J. Non-Cryst. Solids 11, 105–112 (1972).CrossRefGoogle Scholar
  81. 80.
    H. Stiegler and D. R. Haberland, The switching behavior of chalcogenide glass with semiconducting electrodes, J. Non-Cryst. Solids 11, 147–152 (1972).CrossRefGoogle Scholar
  82. 81.
    R. Holstrom, Switching and conduction behavior of amorphous semiconductor diodes, Proc. IEEE 57, 1451–1453 (1969).CrossRefGoogle Scholar
  83. 82.
    A. C. Warren, Switching mechanism in chalcogenide glasses, Electronics Letters 5, 461–462 (1969).CrossRefGoogle Scholar
  84. 83.
    P. Burton and R. W. Brander, Thermal breakdown and switching in chalcogenide glasses, Int. J. Electronics 27, 517–525 (1969).CrossRefGoogle Scholar
  85. 84.
    D. L. Thomas and A. C. Warren, Preswitching behavior of amorphous chalcogenide semiconductor films, Electronic Letters 6, 62–64 (1970).CrossRefGoogle Scholar
  86. 85.
    F. M. Collins, Switching by thermal avalanche in semiconducting glass films, J. Non-Cryst. Solids 2, 496–503 (1970).CrossRefGoogle Scholar
  87. 86.
    H. Fritzsche and S. R. Ovshinsky, Conduction and switching phenomena in covalent alloy semiconductors, J. Non-Cryst. Solids 4, 464–479 (1970).CrossRefGoogle Scholar
  88. 87.
    H. J. Stocker, C. A. Barlow, Jr., and D. F. Weirauch, Mechanism of threshold switching in semiconducting glasses, J. Non-Cryst. Solids 4, 523–535 (1970).CrossRefGoogle Scholar
  89. 88.
    A. C. Warren, Thermal switching in semiconducting glasses, J. Non-Cryst. Solids 4, 613–616 (1970).CrossRefGoogle Scholar
  90. 89.
    H. S. Chen and T. T. Wang, On the theory of switching phenomena in semiconducting glasses, Phys. Stat. Sol. 2, 79–84 (1970).CrossRefGoogle Scholar
  91. 90.
    D. D. Thornburg, Role of capacitive discharge energy in the switching of semiconducting glasses, Phys. Rev. Lett. 27, 1208–1210 (1971).CrossRefGoogle Scholar
  92. 91.
    D. L. Thomas and J. C. Male, Thermal breakdown in chalcogenide glasses, J. Non-Cryst. Solids 8–10, 522–530 (1972).CrossRefGoogle Scholar
  93. 92.
    N. Croitoru and C. Popescu, Approximations and boundary conditions in the theory of thermal instabilities, J. Non-Cryst. Solids 11, 397–401 (1973).CrossRefGoogle Scholar
  94. 93.
    J. C. Male and D. L. Thomas, Intrinsic instability and current channelling in thermally controlled two-terminal switching devices, J. Non-Cryst. Solids 13 409422 (1973/74).Google Scholar
  95. 94.
    K. Shimakawa, Y. Inagaki, and T. Arizumi, Thermal switching in chalcogenide glass semiconductors, Japan. J. Appl. Phys. 12, 1043–1046 (1973).CrossRefGoogle Scholar
  96. 95.
    K. W. Böer and S. R. Ovshinsky, Electrothermal initiation of an electronic switching mechanism in semiconducting glasses, J. Appl. Phys. 41, 2675–2681 (1970).CrossRefGoogle Scholar
  97. 96.
    A. C. Warren and J. C. Male, Field-enhanced conductivity effects in thin chalcogenide-glass switches, Electronics Letters 6, 567–569 (1970).CrossRefGoogle Scholar
  98. 97.
    K. W. Böer, G. Döhler, and S. R. Ovshinsky, Time delay for reversible electric switching in semiconducting glasses, J. Non-Cryst. Solids 4, 573–582 (1970).CrossRefGoogle Scholar
  99. 98.
    W. W. Sheng and C. R. Westgate, On the preswitching phenomena in semiconducting glasses, Solid State Commun. 9, 387–391 (1971).CrossRefGoogle Scholar
  100. 99.
    T. Kaplan and D. Adler, Thermal effects in amorphous-semiconductor switching, Appl. Phys. Lett. 19, 418–420 (1971).CrossRefGoogle Scholar
  101. 100.
    K. W. Böer, Electro-thermal effects in ovonics, Phys. Stat. Sol. 4, 571–596 (1971).CrossRefGoogle Scholar
  102. 101.
    A. H. M. Shousha, Negative differential conductivity due to electrothermal instabilities in thin amorphous films, J. Appl. Phys. 42 5131–5136 (1971).CrossRefGoogle Scholar
  103. 102.
    C. Popescu and N. Croitoru, The contribution of the lateral thermal instability to the switching phenomenon, J. Non-Cryst. Solids 8–10, 531–537 (1972).CrossRefGoogle Scholar
  104. 103.
    T. Kaplan and D. Adler, Electrothermal switching in amorphous semiconductors, J. Non-Cryst. Solids 8–10, 538–543 (1972).Google Scholar
  105. 104.
    D. M. Kroll and M. H. Cohen, Theory of electrical instabilities of mixed electronic and thermal origin, J. Non-Cryst. Solids 8–10, 544–551 (1972).Google Scholar
  106. 105.
    D. M. Kroll, Ph.D. thesis, Physics Department, The University of Chicago, 1973.Google Scholar
  107. 106.
    M. P. Shaw, S. H. Holmberg and S. A. Kostylev, Reversible switching in thin amorphous chalcogenide films—electronic effects, Phys. Rev. Lett. 31, 542–545 (1973).CrossRefGoogle Scholar
  108. 107.
    B. T. Kolomiets, E. A. Lebedev, and E. A. Smorgonskaya, Breakdown mechanism of chalcogenide glasses, Soviet Phys. Semiconductors 6, 1766–1767 (1973).Google Scholar
  109. 108.
    N. K. Hindley, Random phase model of amorphous semiconductors, I. Transport and optical properties. II. Hot electrons, J. Non-Cryst. Solids 5, 17–40 (1970).CrossRefGoogle Scholar
  110. 109.
    N. F. Mott, Conduction in non-crystalline systems. VII. Non-ohmic behavior and switching, Phil. Mag. 24, 911–934 (1971).CrossRefGoogle Scholar
  111. 110.
    N. F. Mott, Conduction and switching in non-crystalline materials, Contemp. Phys. 10, 125–138 (1969).CrossRefGoogle Scholar
  112. 111.
    H. K. Henisch, E. A. Fagen, and S. R. Ovshinsky, A qualitative theory of electrical switching processes in monostable amorphous structures, J. Non-Cryst. Solids 4, 538–547 (1970).CrossRefGoogle Scholar
  113. 112.
    W. Heywang and D. R. Haberland, Zur Frage des Schalteffekts in Amorphen Halbleitern, Solid State Electronics 13, 1077–1079 (1970).CrossRefGoogle Scholar
  114. 113.
    F. W. Schmidlin, Electrical switching device based on charge-controlled double injection, Phys. Rev. B 1, 1583–1587 (1970).Google Scholar
  115. 114.
    I. Lucas, Interpretation of the switching effect in amorphous semiconductors as a recombination instability, J. Non-Cryst. Solids 6, 136–144 (1971).CrossRefGoogle Scholar
  116. 115.
    H. Fritzsche and S. R. Ovshinsky, Electrical conduction in amorphous semiconductors and the physics of the switching phenomena, J. Non-Cryst. Solids 2, 393–405 (1970).CrossRefGoogle Scholar
  117. 116.
    M. Iida and A. Hamada, Electrical switching in mobility-gap materials, Japan. J. Appl. Phys. 10, 224–227 (1971).CrossRefGoogle Scholar
  118. 117.
    B. G. Bagley, The field dependent mobility of localized electronic carriers, Solid State Commun. 8, 345–348 (1970).CrossRefGoogle Scholar
  119. 118.
    H. K. Henisch, W. R. Smith, and W. Wihl, Field-dependent photoresponse of threshold switching systems, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Vol. 1, 567–570, Taylor and Francis Ltd., London (1974).Google Scholar
  120. 119.
    W. van Roosbroeck, Electronic basis of switching in amorphous semiconductor alloys, Phys. Rev. Lett. 28, 1120–1123 123 (1972).Google Scholar
  121. 120.
    W. van Roosbroeck, Principles of electrical behavior of amorphous semiconductor alloys, J. Non-Cryst. Solids 12, 232–262 (1973).CrossRefGoogle Scholar
  122. 121.
    E. J. Evans, J. H. Helbers, and S. R. Ovshinsky, Reversible conductivity transformations in chalcogenide alloy films, J. Non-Cryst. Solids 2, 334–346 (1970).CrossRefGoogle Scholar
  123. 122.
    T. N. Vengel and B. T. Kolomiets, Vitreous semiconductors; some properties of materials in the As2Se3 As2Te3 system, Soviet Phys.—Technical Physics 2, 2314–2319 (1957).Google Scholar
  124. 123.
    B. G. Bagley and H. E. Bair, Thermally induced transformations in glassy chalcogenides, J. Non-Cryst. Solids 2, 155–160 (1970).CrossRefGoogle Scholar
  125. 124.
    H. Fritzsche and S. R. Ovshinsky, Calorimetric and dilatometric studies on chalcogenide glasses, J. Non-Cryst. Solids 2, 148–154 (1970).CrossRefGoogle Scholar
  126. 125.
    S. V. Phillips, R. E. Booth, and P. W. McMillan, Structural changes related to electrical properties of bulk chalcogenide glasses, J. Non-Cryst. Solids 4, 510–517 (1970).CrossRefGoogle Scholar
  127. 126.
    R. Pinto, Threshold and memory switching in thin films of the chalcogenide systems Ge-As-Te and Ge-As-Se, Thin Solid Films 7, 391–404 (1971).CrossRefGoogle Scholar
  128. 127.
    J. A. Savage, Glass forming region and DTA survey in the Ge-As-Te memory switching glass system, J. Mat. Sci. 6, 964–968 (1971).CrossRefGoogle Scholar
  129. 128.
    D. L. Eaton, Electrical conduction anomaly of semiconducting glasses in the system As-Te-I, J. Am. Ceramic Soc. 47, 554–558 (1964).CrossRefGoogle Scholar
  130. 129.
    H. J. Stocker, Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, Appl. Phys. Lett. 15, 55–57 (1969).CrossRefGoogle Scholar
  131. 130.
    M. Kikuchi, S. Iizima, M. Sugi, and K. Tanaka, Lock-on phenomenon in amorphous semiconductors, Japan Soc. Appl. Phys. 39 (Suppl.), 203–210 (1970).Google Scholar
  132. 131.
    M. Kikuchi and S. Iizima, Memory exchange in amorphous semiconductors, Appl. Phys. Lett. 15, 323–325 (1969).CrossRefGoogle Scholar
  133. 132.
    K. Tanaka, S. Iizima, M. Sugi, and M. Kikuchi, Electrical nature of the lock-on filament in amorphous semiconductors, Solid State Commun. 8, 75–78 (1970).CrossRefGoogle Scholar
  134. 133.
    R. Uttecht, H. Stevenson, C. H. Sie, J. D. Griener, and K. S. Raghavan, Electric field-induced filament formation in As-Te-Ge glass, J. Non-Cryst. Solids 2, 358–370 (1970).CrossRefGoogle Scholar
  135. 134.
    C. H. Sie, Electron microprobe analysis and radiometric microscopy of electric field induced filament formation on the surface of As-Te-Ge glass, J. Non-Cryst. Solids 4, 548–553 (1970).CrossRefGoogle Scholar
  136. 135.
    D. R. Haberland and H. P. Kehrer, Mikroskopische Untersuchungen an Festkörperschaltern aus Halbleitendem Glas, Solid-State Electronics 13, 451–455 (1970).CrossRefGoogle Scholar
  137. 136.
    D. Armitage and C. H. Champness, Memory switching and crystallization in selenium, Can. J. Phys. 49, 2718–2723 (1971).CrossRefGoogle Scholar
  138. 137.
    R. Pinto and K. V. Ramanathan, Electric field induced memory switching in thin films of the chalcogenide system Ge-As-Se, Appl. Phys. Lett. 19, 221–223 (1971).CrossRefGoogle Scholar
  139. 138.
    D. Armitage and C. H. Champness, Switching in amorphous selenium, J. NonCryst. Solids 7, 410–416 (1972).CrossRefGoogle Scholar
  140. 139.
    C. H. Sie, M. P. Dugan, and S. C. Moss, Direct observations of filaments in the ovonic read-mostly memory, J. Non-Cryst. Solids 8–10, 877–884 (1972).CrossRefGoogle Scholar
  141. 140.
    R. H. Willens, Dendritic crystallization of an amorphous alloy. J. Appl. Phys. 33, 3269–3270 (1962).CrossRefGoogle Scholar
  142. 141.
    A. Bienenstock, F. Betts, and S. R. Ovshinsky, Structural studies of amorphous semiconductors, J. Non-Cryst. Solids 2, 347–357 (1970).CrossRefGoogle Scholar
  143. 142.
    T. Takamori, R. Roy, and G. J. McCarthy, Structure of memory-switching glasses, I. Crystallization temperature and its control in Ge-Te glasses, Mat. Res. Bull. 5, 529–540 (1970).CrossRefGoogle Scholar
  144. 143.
    D. Adler, J. M. Franz, C. R. Hewes, B. P. Kraemer, D. J. Sellmyer, and S. D. Senturia, Transport properties of a memory-type chalcogenide glass, J. NonCryst. Solids 4, 330–337 (1970).CrossRefGoogle Scholar
  145. 144.
    T. Takamori, R. Roy, and G. J. McCarthy, Observations of surface-nucleated crystallization in memory-switching glasses, J. Appl. Phys. 42, 2577–2578 (1971).CrossRefGoogle Scholar
  146. 145.
    S. R. Ovshinsky and H. Fritzsche, Reversible structural transformations in amorphous semiconductors for memory and logic, Metallurgical Trans. 2, 641645 (1971).Google Scholar
  147. 146.
    J. R. Bosnell and C. B. Thomas, Preswitching electrical properties, forming, and switching in amorphous chalcogenide alloy threshold and memory devices, Solid-State Electronics 15, 1261–1271 (1972).CrossRefGoogle Scholar
  148. 147.
    P. Chaudhari and S. R. Herd, Crystallization of certain chalcogenide glasses, J. Non-Cryst. Solids 8–10, 56–63 (1972).CrossRefGoogle Scholar
  149. 148.
    E. J. Evans, Atomic transport in liquid chalcogenide alloys, J. Non-Cryst. Solids 8–10, 702–707 (1972).CrossRefGoogle Scholar
  150. 149.
    S. C. Moss and J. P. deNeufville, Thermal crystallization of selected thin films of Te-based memory glasses, Mat. Res. Bull. 7, 423–442 (1972).CrossRefGoogle Scholar
  151. 150.
    J. A. Savage, Glass formation and D.S.C. data in the Ge–Te and As–Te memory glass systems, J. Non-Cryst. Solids 11, 121–130 (1972).CrossRefGoogle Scholar
  152. 151.
    M. H. Cohen, R. G. Neale, and A. Paskin, A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8–10, 885–891 (1972).CrossRefGoogle Scholar
  153. 152.
    J. Feinleib, J. deNeufville, S. C. Moss, and S. R. Ovshinsky, Rapid reversible light-induced crystallization of amorphous semiconductors, Appl. Phys. Lett. 18, 254–257 (1971).CrossRefGoogle Scholar
  154. 153.
    K. Tanaka, Y. Okada, M. Sugi, S. Iizima, and M. Kikuchi, Kinetics of growth of conductive filament in As–Te–Ge glasses, J. Non-Cryst. Solids 12, 100–114 (1973).CrossRefGoogle Scholar
  155. 154.
    A. D. Pearson, W. R. Northover, J. F. Dewald, and W. F. Peck, Jr., Chemical physical and electrical properties of some unusual inorganic glasses, in Advances in Glass Technology, pp. 357–365, Plenum Press, New York (1962).Google Scholar
  156. 155.
    A. D. Pearson, The Hall effect—Seebeck effect sign anomaly in semiconducting glasses, J. Electrochem. Soc. 111, 753–755 (1964).CrossRefGoogle Scholar
  157. 156.
    R. Roy and V. Caslayska, Di-phasic structure of switching and memory device glasses, Solid State Commun. 7, 1467–1473 (1969).CrossRefGoogle Scholar
  158. 157.
    B. G. Bagley and W. R. Northover, Electron microscopic observations of thermally induced transformations in amorphous chalcogenide thin films, J. Non-Cryst. Solids 2, 161–169 (1970).CrossRefGoogle Scholar
  159. 158.
    R. G. Brandes, F. P. Laming, and A. D. Pearson, Optically formed dielectric gratings in thick films of arsenic-sulfur glass, Appl. Opt. 9, 1712–1714 (1970).CrossRefGoogle Scholar
  160. 159.
    A. D. Pearson and B. G. Bagley, The mechanism of hologram formation in arsenic-sulfur glass, Mat. Res. Bull. 6, 1041–1046 (1971).CrossRefGoogle Scholar
  161. 160.
    S. A. Keneman, Hologram storage in arsenic trisulfide thin films, Appl. Phys. Lett. 19, 205–207 (1971).CrossRefGoogle Scholar
  162. 161.
    Y. Ohmachi and T. Igo, Laser-induced refractive-index change in As–S–Ge glasses, Appl. Phys. Lett. 20, 506–508 (1972).CrossRefGoogle Scholar
  163. 162.
    T. Igo and Y. Toyoshima, Optically induced reversible change in amorphous semiconductors, Japan. J. Appl. Phys. 11, 117–118 (1972).CrossRefGoogle Scholar
  164. 163.
    T. Igo and Y. Toyoshima, A reversible optical change in the As–Se–Ge glass, J. Non-Cryst. Solids 11, 304–308 (1973).CrossRefGoogle Scholar
  165. 164.
    Y. Asahara and T. Izumitani, Light-induced memory effect in Cu–As–Se glasses, Japan. J. Appl. Phys. 11, 1748 (1972).CrossRefGoogle Scholar
  166. 165.
    J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, Photodecomposition of amorphous As2Se3 and As2S3, J. Appl. Phys. 42, 4908–4916 (1971).CrossRefGoogle Scholar
  167. 166.
    J. P. deNeufville, S. C. Moss, and S. R. Ovshinsky, Photostructural transformations in amorphous As2Se3 and As2S3 films, J. Non-Cryst. Solids 13 191–223 (1973/74).CrossRefGoogle Scholar
  168. 167.
    J. P. deNeufville, R. Seguin, S. C. Moss, and S. R. Ovshinsky, Mechanism of reversible optical storage in evaporated amorphous AsSe and Ge10As40Se50, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Vol. 2, 737–743, Taylor and Francis Ltd., London (1974).Google Scholar
  169. 168.
    J. Feinleib and S. R. Ovshinsky, Reflectivity studies of the Te (Ge,As)-based amorphous semiconductor in the conducting and insulating states, J. Non-Cryst. Solids 4, 564–572 (1970).CrossRefGoogle Scholar
  170. 169.
    J. Dresner and G. B. Stringfellow, Electronic processes in the photo-crystallization of vitreous selenium, J. Phys. Chem. Solids 29, 303–311 (1968).CrossRefGoogle Scholar
  171. 170.
    A. Hamada, T. Kurosu, M. Saito, and M. Kikuchi, Transient phenomena of the light-induced memory in amorphous semiconductor films, Appl. Phys. Lett. 20, 9–11 (1972).CrossRefGoogle Scholar
  172. 171.
    R. J. von Gutfeld and P. Chaudhari, Laser writing and erasing on chalcogenide films, J. Appl. Phys. 43, 4688–4693 (1972).CrossRefGoogle Scholar
  173. 172.
    I. A. Paribok-Aleksandrovich, Photocrystallization of amorphous selenium, Soviet Phys. Solid State 11, 1631 (1970).Google Scholar
  174. 173.
    K. Weiser, R. J. Gambino, and J. A. Reinhold, Laser-beam writing on amorphous chalcogenide films: crystallization kinetics and analysis of amorphizing energy, Appl. Phys. Lett. 22, 48–49 (1973).CrossRefGoogle Scholar
  175. 174.
    J. P. deNeufville, Optical information storage, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Vol. 2, 1351–1360, Taylor and Francis Ltd., London (1974).Google Scholar
  176. 175.
    R. J. von Gutfield, The extent of crystallization resulting from submicrosecond optical pulses on Te-based memory materials, Appl. Phys. Lett. 22, 257–258 (1973).CrossRefGoogle Scholar
  177. 176.
    S. R. Ovshinsky and P. H. Klose, Reversible high-speed high-resolution imaging in amorphous semiconductors, in 1971 SID International Symposium Digest of Technical Papers, pp. 58–61, Lewis Winner, New York (1971).Google Scholar
  178. 177.
    K. S. Kim and D. Turnbull, Crystallization of amorphous selenium films, I. Morphology and kinetics, J. Appl. Phys. 44, 5237–5244 (1973).CrossRefGoogle Scholar
  179. K. S. Kim and D. Turnbull, II. Photo and impurity effects, J. Appl. Phys. 45, 3447–3452 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • David Turnbull
    • 1
  • Brian G. Bagley
    • 2
  1. 1.Division of Engineering and Applied PhysicsHarvard UniversityUSA
  2. 2.Bell LaboratoriesMurry HillUSA

Personalised recommendations