Repair of Radiation Damage in Mammalian Cells

  • R. B. Setlow


The responses, such as survival, mutation and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures — DNA, RNA, protein and membranes — but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. The general subject of repair of DNA damage has been reviewed extensively [1–4].


Excision Repair Ataxia Telangiectasia Xeroderma Pigmentosum Ataxia Telangiectasia Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Setlow and J. K. Setlow, Effects of Radiation on Polynucleotides, Ann. Rev. Biophys. Bioengineer., 1: 293 (1972).CrossRefGoogle Scholar
  2. 2.
    J. J. Roberts, The repair of DNA modified by cytotoxic, muta-genic, and carcinogenic chemicals, Adv. Radiat. Biol., 7: 211 (1978).Google Scholar
  3. 3.
    P. C. Hanawalt, E. C., Friedberg, and C. F. Fox, “DNA Repair Mechanisms,” Academic Press, New York (1978).Google Scholar
  4. 4.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells, Ann. Rev. Biochem., 48: 783 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    R. B. Setlow, Repair deficient human disorders and cancer, Nature, 271: 713 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    C. F. Arlett and A. R. Lehmann, Human disorders showing increased sensitivity to the induction of genetic damage, Ann. Rev. Genet., 12: 95 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    E. C. Friedberg, U. K. Ehmann, and J. I. Williams, Human diseases associated with defective DNA repair, Adv. Radiat. Biol., 8: 85 (1979).Google Scholar
  8. 8.
    R. B. Setlow, DNA damage and carcinogenesis, in: “Chromosome Damage and DNA Repair,” E. Seeberg and K. Kleppe, eds., Plenum Press, New York (1981).Google Scholar
  9. 9.
    G. J. Kantor, J. C. Sutherland, and R. B. Setlow, Action spectra for killing nondividing normal human and xeroderma pigmentosum cells, Photochem. Photobiol., 31: 459 (1980).CrossRefGoogle Scholar
  10. 10.
    E. D. Jacobson, K. Krell, and M. J. Dempsey, The wavelength dependence of ultraviolet light-induced cell killing and muta-genesis in L5178Y mouse lymphoma cells, Photochem. Photobiol., 33: 257 (1981).CrossRefGoogle Scholar
  11. 11.
    J. Doniger, E. D. Jacobson, K. Krell, and J. A. DiPaolo, Ultraviolet light action spectra for neoplastic transformation and lethality of Syrian hamster embryo cells correlate with spectrum for pyrimidine dimer formation in cellular DNA, Proc. Natl. Acad. Sci. USA, 78: 2378 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    E. C. Friedberg and P. C. Hanawalt, eds., “DNA Repair, a Laboratory Manual of Research Procedures,” Marcel Dekker, New York (1981).Google Scholar
  13. 13.
    W. A. Haseltine, L. K. Gordon, C. P. Lindau, R. H. Grafstrom, N. L. Shaper, and L. Grossman, Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus, Nature, 285: 634 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    B. Demple and S. Linn, DNA N-glycosylases and DNA repair, Nature, 287: 203 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Sato and R. B. Setlow, DNA repair in a UV-sensitive mutant of a mouse cell line, Mutat. Res., in press.Google Scholar
  16. 16.
    G. J. Kantor and R. B. Setlow, Rate and extent of DNA repair in nondividing human diploid fibroblasts, Cancer Res., 41: 819 (1980).Google Scholar
  17. 17.
    A. R. Lehmann, S. Kirk-Bell, and L. Mayne, Abnormal kinetics of DNA synthesis in ultraviolet light-irradiated cells from patients with Cockayne’s syndrome, Cancer Res., 39: 4237 (1979).PubMedGoogle Scholar
  18. 18.
    G. J. Kantor and D. R. Hull, An effect of ultraviolet light on RNA and protein synthesis in nondividing human diploid fibroblasts, Biophys. J., 27: 359 (1979).Google Scholar
  19. 19.
    A. R. Lehmann, S. Kirk-Bell, C. F. Arlett, M. C. Paterson, P. H. M. Lohman, E. A. deWeerd-Kastelein, and D. Bootsma, Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation, Proc. Natl. Acad. Sci. USA, 72: 219 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    V. M. Maher, L. M. Ouelette, R. D. Curren, and J. J. McCormick, Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells, Nature, 261: 593 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    R. B. Setlow, F. A. Ahmed, and E. Grist, Xeroderma pigmentosum: Damage to DNA is involved in carcinogenesis, in: “Origins of Human Cancer,” H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor (1977).Google Scholar
  22. 22.
    J. Doniger, DNA replication in ultraviolet light irradiated Chinese hamster cells: The nature of replicon inhibition and post-replication repair, J. Mol. Biol., 120: 433 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Moustacchi, U. K. Ehmann, and E. C. Friedberg, Defective recovery of semi-conservative DNA synthesis in xeroderma pigmentosum cells following split-dose ultraviolet irradiation, Mutat. Res., 62: 159 (1979).Google Scholar
  24. 24.
    L. E. Bockstahler and C. D. Lytle, Radiation enhanced reactivation of nuclear replicating mammalian viruses, Photochem. Photobiol., 25: 477 (1977).CrossRefGoogle Scholar
  25. 25.
    E. L. Scott and M. L. Straf, Ultraviolet radiation as a cause of cancer, in: “Origins of Human Cancer,” H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor (1977).Google Scholar
  26. 26.
    R. B. Setlow, Different basic mechanisms in DNA repair, Arch. Toxicol. Suppl., 3: 217 (1980).Google Scholar
  27. 27.
    R. B. Setlow and J. D. Regan, unpublished results.Google Scholar
  28. 28.
    B. Lambert, U. Ringborg, and L. Skoog, Age-related decrease of ultraviolet light-induced DNA repair synthesis in human peripheral leukocytes, Cancer Res., 39: 2792 (1979).PubMedGoogle Scholar
  29. 29.
    J. J. Madden, A. Falek, D. A. Shafer, and J. H. Glick, Effects of opiates and demographic factors on DNA repair synthesis in human leukocytes, Proc. Natl. Acad. Sci. USA, 76: 5769 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    B. Lambert, U. Ringborg, and G. Swanbeck, Ultraviolet-induced DNA repair synthesis in lymphocytes from patients with actinic keratosis, J. Invest. Dermatol., 67: 594 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    C. F. Arlett and S. Harcourt, Survey of radiosensitivity in a variety of human cell strains, Cancer Res., 40: 926 (1980).PubMedGoogle Scholar
  32. 32.
    M. C. Paterson, Use of purified lesion-recognizing enzymes to monitor DNA repair in vivo, Adv. Radiat. Biol., 7: 1 (1978).Google Scholar
  33. 33.
    M. Swift, L. Sholman, M. Perry, and C. Chase, Malignant neoplasms in the families of patients with ataxia telangiectasia, Cancer Res., 36: 209 (1976).PubMedGoogle Scholar
  34. 34.
    M. C. Paterson, A. K. Anderson, B. P. Smith, and P. J. Smith, Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes is manifested by defective colony forming ability and reduced repair replication after hypoxic x-irradiation, Cancer Res., 39: 3725 (1979).PubMedGoogle Scholar
  35. 35.
    P. Chen, M. F. Lavin, C. Kidson, and D. Moss, Identification of ataxia telangiectasia heterozygotes, a cancer prone population, Nature, 274: 484 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    R. B. Painter and B. R. Young, X-ray induced inhibition of DNA synthesis in Chinese hamster ovary, human HeLa, and mouse L cells, Radiat. Res., 64: 648 (1975).Google Scholar
  37. 37.
    R. B. Painter and B. R. Young, Radiosensitivity in ataxis telangiectasia: A new explanation, Proc. Natl. Acad. Sci. USA, 77: 7315 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    P. J. Smith and M. C. Paterson, Gamma ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts as a function of excision repair capacity, Biochem. Biophys. Res. Commun., 97: 897 (1980).CrossRefGoogle Scholar
  39. 39.
    H. Takebe, et al., Genetic aspects of xeroderma pigmentosum and other cancer-prone diseases, in: “Genetic and Environmental Factors in Experimental and Human Cancer,” H. V. Gelboin et al., eds., Japan Scientific Societies, Tokyo (1980).Google Scholar
  40. 40.
    R. B. Setlow, F. M. Faulcon, and J. D. Regan, Defective repair of gamma-ray induced DNA damage in xeroderma pigmentosum cells, Int. J. Radiat. Biol., 29: 125 (1976).CrossRefGoogle Scholar
  41. 41.
    J. C. Sutherland and K. P. Griffin, Absorption spectrum of DNA for wavelengths greater than 3000 nm, Radiat. Res., 86: 399 (1981).Google Scholar
  42. 42.
    P. V. Hariharan and P. A. Cerutti, Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in HeLa cells, Biochemistry, 16: 2791 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    L. C. Erickson, M. 0. Bradley, and K. W. Kohn, M.chanisms for the production of DNA damage in cultured human and hamster cells irradiated with light from fluorescent lamps, sunlamps, and the sun, Biochim. Biophys. Acta, 610: 105 (1980).Google Scholar
  44. 44.
    P. J. Smith and M. C. Paterson, Abnormal responses to mid-ultraviolet light of cultured fibroblasts from patients with disorders featuring sunlight sensitivity, Cancer Res., 41: 511 (1981).PubMedGoogle Scholar
  45. 45.
    I. Zbinden and P. Cerutti, Near-ultraviolet sensitivity of skin fibroblasts of patients with Bloom’s syndrome, Biochem. Biophys. Res. Commun., 98: 579 (1981).CrossRefGoogle Scholar
  46. 46.
    H. Hirschi, M. S. Netrawali, J. F. Remsen, and P. A. Cerutti, Formation of DNA single-strand breaks by near ultraviolet and x-rays in normal and Bloom’s syndrome skin fibroblasts, Cancer Res., 41: 2003 (1981).Google Scholar
  47. 47.
    I. Emerit and P. Cerutti, Clastogenic activity from Bloom’s syndrome fibroblast cultures, Proc. Natl. Acad. Sci. USA, 78: 1868–1872 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • R. B. Setlow
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations