Advertisement

Localization of Genes Involved in DNA Repair on Human Chromosomes by Using Cell Fusion

  • M. Stefanini
  • W. Keijzer
  • A. J. J. Reuser
  • A. Geurts Van Kessel
  • T. Verkerk
  • A. Westerveld
  • J. F. Jongkind
  • D. Bootsma

Abstract

The use of somatic cell hybrids in human gene mapping is based on the fact that human chromosomes are preferentially lost in proliferating hybrids formed between human cells and tissue culture adapted rodent cells. When it is possible to discriminate between homologous human and rodent gene products, correlation of the expression of the human phenotype in the hybrids with their human chromosome pattern allows the assignment of genes to a specific chromosome. In the case of DNA repair, the gene products are unknown and the analysis has to rely on less specific characteristics and differences between the human and rodent repair systems, like the level of repair DNA synthesis. We report differences in repair systems between normal human and Chinese hamster cells and analysis of the repair capacity of proliferating human-Chinese hamster cells.

Keywords

Human Chromosome Hybrid Cell Chinese Hamster Cell Normal Human Fibroblast Normal Human Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bootsma, D., in: “DNA REpair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds., p. 589–601 (1978).Google Scholar
  2. 2.
    Kraemer, K. H., in: “Clinical Dermatology,” D. J. Demis, R. L. Dobson, and J. Mc Guire, eds., New York, 4:1–33 (1980).Google Scholar
  3. 3.
    Bush, D. B., Cleaver, J. E., and Glaser, D. A., Somat. Cell Genet., 6: 407–418 (1980).CrossRefGoogle Scholar
  4. 4.
    Thompson, L. H., Rubin, J. S., Cleaver, J. E., Whitmore, G. F., and Brookman, W., Somat. Cell Genet., 6: 391–405 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    Chang, C. C., Boesi, J. A., Warren, S. T., Sabourin, C. L. K., Liu, P. K., Glatzer, L., and Trosko, J. E., Somat. Cell Genet., 7: 235–253 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    Giannelli, F., and Pawsey, S. A., J. Cell Sci., 15: 163–176 (1974).PubMedGoogle Scholar
  7. 7.
    Giannelli, F., and Pawsey, S. A., J. Cell Sci., 20: 207–213 (1976).PubMedGoogle Scholar
  8. 8.
    Pawsey, S. A., Magnus, I. A., Ramsay, C. A., Benson, P. F., and Giannelli, F., Quart. J. Med., 48: 179–210 (1979).PubMedGoogle Scholar
  9. 9.
    Matsukuma, S., Zelle B., Keijzer, W., Berends, F., and Bootsma, D., Exp. Cell Res., 134: 103–112 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • M. Stefanini
    • 1
  • W. Keijzer
    • 1
  • A. J. J. Reuser
    • 1
  • A. Geurts Van Kessel
    • 1
  • T. Verkerk
    • 1
  • A. Westerveld
    • 1
  • J. F. Jongkind
    • 1
  • D. Bootsma
    • 1
  1. 1.Department of Cell Biology and GeneticsErasmus UniversityRotterdamThe Netherlands

Personalised recommendations