Advertisement

Cellular Studies on Patients with an Unusual Clinical Sensitivity to Ionizing Radiation

  • A. M. R. Taylor

Abstract

There are people in the population who show an unusual sensitivity to ionizing radiation compared with normal individuals. This effect has been demonstrated in the course of bona fide radiotherapy for malignant conditions in these patients with the result proving either lethal to the patient or subsequently giving rise to tumors in the irradiated field. These individuals are members of a small group with inherited disorders showing a predisposition to malignant disease. Although some attempts have been made to study the variation in radiosensitivity in normal members of the population (Weichselbaum et al., 1976) most work has been done on the inherited disorders. The underlying causes of the different responses to radiation are at present not understood, but it seems likely that more than a single factor is important. In ataxia telangiectasia, for example, particular tumor types are associated with radiation sensitivity in these patients. This suggests that particular cell types or differentiation states are more susceptible to the consequences of the possible repair deficiency in these patients.

Keywords

Basal Cell Carcinoma Ataxia Telangiectasia Irradiate Field Retinoblastoma Patient Induce Chromosome Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arlett, C. F., Presymptomatic diagnosis of Huntington’s disease, Lancet (i), 540 (1980).Google Scholar
  2. Bigelow, S. B., Rary, J. M., and Bender, M. A., G2 chromosomal radiosensitivity in Fanconi’s anaemia, Mutation Res., 63, 189–199 (1979).PubMedCrossRefGoogle Scholar
  3. Chen, P., Lavin, M. F., Kidson, C., and Moss, D., Identification of ataxia telangiectasia heterozygotes, a cancer prone population, Nature, 274, 484–486 (1978).PubMedCrossRefGoogle Scholar
  4. Chen, P., Kidson, C., and Imray, F. P., Huntington’s chorea: implications of associated cellular radiosensitivity, Clin. Genet., 20, 331–336 (1981).Google Scholar
  5. Countryman, P. I., Heddle, J. A., and Crawford, E., The repair of x-ray induced chromosomal damage in trisomy 21 and normal diploid lymphocytes, Cancer Res., 37, 52–58 (1977).PubMedGoogle Scholar
  6. Cox, R., A cellular description of the repair defect in ataxia telangiectasia, in: B. A. Bridges, D. G. Harnden, eds., Ataxia telangiectasia–A cellular and molecular link between cancer, neuropathology and immune deficiency, pp. 141–153, John Wiley and Sons, Ltd. (1982).Google Scholar
  7. Cramer, P., and Painter, R. B., Bleomycin resistant DNA synthesis in ataxia telangiectasia cells, Nature, 291, 671–672 (1981).PubMedCrossRefGoogle Scholar
  8. Cunliffe, P. N., Mann, J. R., Cameron, A. H., Roberts, K. O., and Ward, H. W. C., Radiosensitivity in ataxia telangiectasia, Brit. J. Radiol., 48, 374–376 (1975).CrossRefGoogle Scholar
  9. Edwards, M. J., and Taylor, A. M. R., Unusual levels of (ADP-ribose)n and DNA synthesis in ataxia telangiectasia cells following yirradiation, Nature, 287, 745–747 (1980).PubMedCrossRefGoogle Scholar
  10. Edwards, M. J., Taylor, A. M. R., and Flude, E. J., Bleomycin induced inhibition of DNA synthesis in ataxia telangiectasia cell lines, Biochem. Biophys. Res. Commun., 102, 610–616 (1981).CrossRefGoogle Scholar
  11. Featherstone, T., A study of cultured cells from basal cell naevus syndrome patients, Ph.D. Thesis, University of Birmingham, England (1981).Google Scholar
  12. Gorlin, R. J., and Sedano, H. O., The multiple naevoid basal cell carcinoma syndrome revisited, Birth Defects, 7 (8), 140–148 (1972).Google Scholar
  13. Gotoff, S. P., Amirmokri, E., and Liebner, E. J., Ataxia telangiectasia: Neoplasia, untoward response to x-irradiation and tuberous sclerosis, Am. J. Dis. Child., 114, 617–625 (1967).PubMedGoogle Scholar
  14. Harnden, D. G., Edwards, M. J., Featherstone, T., Morten, J., Morgan, G. R., and Taylor, A. M. R., Studies on cells from patients who are cancer prone and may be radiosensitive, in: H. V. Gelboin, B. MacMahon, T. Mutsushima, T. Sugimura, S. Takayama, and H. Takebe, eds., Genetic and Environmental Factors in Experimental and Human Cancer, pp. 231–246, Tokyo: Japan Scientific Societies Press (1980).Google Scholar
  15. Houldsworth, J., and Lavin, M. F., Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells, Nucleic Acids Res., 8, 3709–3720 (1980).PubMedCrossRefGoogle Scholar
  16. Inoue, T., Hirano, K., Yokoiyama, A., Kada, T., and Kato, H., DNA repair enzymes in ataxia telangiectasia and Bloom’s syndrome fibroblasts, Biochim. Biophys. Acta, 479, 497–500 (1977).CrossRefGoogle Scholar
  17. Jaspers, N. G. J., de Wit, J., Regulski, M. R., and Bootsma, D., Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents, Cancer Res., 42, 335–341 (1982).PubMedGoogle Scholar
  18. Kidson, C., Chen, P., and Imray, P., Ataxia telangiectasia heterozygotes: dominant expression of ionizing radiation sensitive mutants, in: B. A. Bridges and D. G. Harnden, eds., Ataxia telangiectasia - A cellular and molecular link between cancer, neuropathology and immune deficiency, pp. 363–372, John Wiley and Sons (1982).Google Scholar
  19. Kucerova, M., Comparison of radiation effects in vitro upon chromosomes of human subjects, Acta Radiol., 6, 441–448 (1967).CrossRefGoogle Scholar
  20. Lehmann, A. R., and Stevens, S., The response of ataxia telangiectasia cells to bleomycin, Nucleic Acids Res., 6, 1953–1960 (1979).PubMedCrossRefGoogle Scholar
  21. Morten, J. E. N., Harnden, D. G., and Taylor, A. M. R., Chromosome damage in Go x-irradiated lymphocytes from patients with hereditary retinoblastoma, Cancer Res., 41, 3635–3638 (1981).PubMedGoogle Scholar
  22. Morgan, J. L., Holcomb, T. M., and Morrissey, R. W., Radiation reaction in ataxia telangiectasia, Am. J. Dis. Child., 116, 557–558 (1968).PubMedGoogle Scholar
  23. Moshell, A. N., Tarone, R. E., Barratt, S. F., and Robbins, J. H., Radiosensitivity in Huntingston’s disease: implications for pathogenesis and presymptomatic diagnosis, Lancet (i), 9–11 (1980).Google Scholar
  24. Natarajan, A. T., and Meyers, M., Chromosomal radiosensitivity of ataxia telangiectasia cells at different cell cycle stages, Hum. Genet., 52, 127–132 (1979).Google Scholar
  25. Painter, R. B., and Young, B. R., Radiosensitivity in ataxia telangiectasia: a new explanation, Proc. Natl. Acad. Sci. USA, 77, 7315–7317 (1980).PubMedCrossRefGoogle Scholar
  26. Paterson, M. C., Smith, B. P., Lohmann, P. H. M., Anderson, A. K., and Fishman, L., Defective excision repair of gamma ray damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature, 260, 444–447 (1976).PubMedCrossRefGoogle Scholar
  27. Remsen, J. F., and Cerutti, P. A., Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi’s anaemia, Proc. Natl. Acad. Sci. USA, 73, 2419–2423 (1976).PubMedCrossRefGoogle Scholar
  28. Strong, L. C., Theories of pathogenesis: mutation and cancer, in: J. J. Mulvihill, R. W. Miller, and J. F. Fraumeni, eds., Genetics of human cancer, pp. 401–415, Raven Press (1977).Google Scholar
  29. Swift, M., Sholman, L., Perry, M., and Chase, C., Malignant neoplasms in the families of patients with ataxia telangiectasia, Cancer Res., 36, 209–215 (1976).PubMedGoogle Scholar
  30. Swift, M., Disease predisposition of ataxia telangiectasia heterozygotes, in: B. A. Bridges and D. G. Harnden, eds., Ataxia telangiectasia - A cellular and molecular link between cancer, neuropathology and immune deficiency, pp. 355–361, John Wiley and Sons (1982).Google Scholar
  31. Taylor, A. M. R., Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations, Mutation Res., 50, 407–418 (1978).PubMedCrossRefGoogle Scholar
  32. Taylor, A. M. R., Cytogenetics of ataxia telangiectasia, in: B. A. Bridges and D. G. Harnden, eds., Ataxia telangiectasia — A cellular and molecular link between cancer, neuropathology, and immune deficiency, pp. 53–81, John Wiley and Sons (1982).Google Scholar
  33. Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., and Bridges, B. A., Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity, Nature, 258, 427–429 (1975).PubMedCrossRefGoogle Scholar
  34. Taylor, A. M. R., Metcalfe, J. A., Oxford, J. M., and Harnden, D. G., Is chromatid type damage in ataxia telangiectasia after irradiation at Go a consequence of defective repair? Nature, 260, 441–443 (1976).PubMedCrossRefGoogle Scholar
  35. Taylor, A. M. R., Rosney, C. M., and Campbell, J. B., Unusual sensitivity of ataxia telangiectasia cells to bleomycin, Cancer Res., 39, 1046–1050 (1979).PubMedGoogle Scholar
  36. Weichselbaum, R. R., Epstein, J., and Little, J. B., In vitro radiosensitivity of human diploid fibroblasts derived from patients with unusual clinical responses to radiation, Radiology, 121, 479–482 (1976).PubMedGoogle Scholar
  37. Weichselbaum, R. R., Nove, J., and Little, J. B., Deficient recovery from potentially lethal radiation damage in ataxia telangiectasia and xeroderma pigmentosum, Nature, 271, 261–262 (1978).PubMedCrossRefGoogle Scholar
  38. de Wit, J., Jaspers, N. G. J., and Bootsma, D., The rate of DNA synthesis in normal human and ataxia telangiectasia cells after exposure to ionizing radiation, Mutation Res., 80, 221–226 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • A. M. R. Taylor
    • 1
  1. 1.Department of Cancer StudiesThe Medical SchoolBirminghamEngland

Personalised recommendations