Advertisement

Repair of Ultraviolet-Light-Induced Damage in Human Skin

  • Betsy M. Sutherland

Abstract

Sunlight exposure induces skin thickening, hyper- and hypopigmentation, and skin cancer in man (see Epstein, 1970). Several lines of evidence indict the ultraviolet components (290–400 nm) of sunlight as the causative agent of both basal and squamous cell carcinomas: 1) the predominance of the cancers on sunlight-exposed skin areas (see Epstein, 1970); 2) the correlation of incidence of these types of skin cancer and latitude of residence of the patient (Urbach and Scotto, 1975); 3) the prevention of skin cancer in cancer-prone xeroderma pigmentosum (XP) patients by limitation of ultraviolet exposure (Lynch et al., 1980) (XP is a hereditary, recessive disease of sun-sensitivity, hyper- and hypo-pigmentation and development of cancerous lesions on sunlight-exposed areas; see Robbins et al., 1974). The correlation of melanoma and sunlight exposure is less clear, although recent data suggest that production of these cancers may correlate with occasional acute sunburning (see Committee on Impacts of Stratospheric Change, 1979).

Keywords

Human Skin Xeroderma Pigmentosum Thymine Dimer Postreplication Repair Alkaline Sucrose Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achey, P. M., Woodhead, A. D., and Setlow, R. B., 1979, Photoreactivation of pyrimidine dimers in DNA from thyroid cells of the teleost, Poecilia formosa, Photochem. Photobiol., 29: 305.CrossRefGoogle Scholar
  2. Ananthaswamy, H. N., and Fisher, M. S., 1981, Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin, Cancer Res., 41: 1829.PubMedGoogle Scholar
  3. Bowden, G. T., Trosko, J. E., Shapas, B. G., and Boutwell, R. K., 1975, Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following UV irradiation of mouse skin, Cancer Res., 35: 3599.PubMedGoogle Scholar
  4. Bridges, B. A., 1978, Workshop Summary: Conditioned Repair Responses, in: “DNA Repair Mechanisms,” C. F. Fox, E. C. Friedberg, and P. C. Hanawalt, eds., Academic Press, New York.Google Scholar
  5. Carrier, W. L., Smith, D. P., and Regan, J. P., 1978, Pyrimidine dimer excision in human cells, J. Supramol. Structure Suppl., 2: 77.Google Scholar
  6. Cleaver, J. E., 1966, Photoreactivation: A radiation repair absent from mammalian cells, Biochem. Biophys. Res. Commun., 24: 569.PubMedCrossRefGoogle Scholar
  7. Cleaver, J. E., 1968, Defective repair replication of DNA in xeroderma pigmentosum, Nature, 218: 652.PubMedCrossRefGoogle Scholar
  8. Committee on impacts of stratospheric change, 1979, Protection against depletion of stratospheric ozone by chlorofluorocarbons, National Academy of Sciences Press, Washington, D.C.Google Scholar
  9. Cook, J. S., 1970, Photoreactivation in animal cells, in: “Photo-physiology,” A. C. Giese, ed., Vol. 5, Academic Press, New York.Google Scholar
  10. Cook, J. S., and McGrath, J. R., 1967, Photoreactivating enzyme activity in metazoa, Proc. Nat. Acad. Sci. USA, 58: 1359.PubMedCrossRefGoogle Scholar
  11. Cooke, A., and Johnson, B. E., 1978, Dose response, wavelength dependence and rate of excision of ultraviolet radiation — induced pyrimidine dimers in mouse skin DNA, Biochem. Biophys. Acta, 517: 24.PubMedCrossRefGoogle Scholar
  12. D’Ambrosio, S., 1981 (in press), Photorepair of pyrimidine dimers in human skin in vivo, Photochem. Photobiol.Google Scholar
  13. Dulbecco, R., 1950, Experiments on photoreactivation of bacterophages inactivated with ultraviolet radiation, J. Bacteriol., 59: 329.PubMedGoogle Scholar
  14. Ehmann, U. K., Cook, K. H., and Friedberg, E. C., 1978, in: “DNA Repair Mechanisms,” P. C. Hanawalt and E. C. Friedberg, eds., Academic Press, New York.Google Scholar
  15. Epstein, J. H., 1970, Ultraviolet Carcinogenesis, in: “Photo-physiology,” A. C. Giese, ed., Vol. V, Academic Press, New York.Google Scholar
  16. Epstein, J. H., Fukuyama, K., Reed, W. E., and Epstein, W. L., 1970, Defect in DNA synthesis in skin of patients with xeroderma pigmentosum demonstrated in vivo, Science, 168: 1477.PubMedCrossRefGoogle Scholar
  17. Hanawalt, P. C., Copper, P. K., Ganesan, A. K., and Smith, C. A., 1979, DNA repair in bacteria and mammalian cells, Ann. Rev. Biochem., 48: 783.PubMedCrossRefGoogle Scholar
  18. Harm, H., 1976, Damage and repair in mammalian cells after ultraviolet and/or visible light treatment, in: “Symposium on Biological effects and measurement of light sources, proceedings,” DeWitt G. Hazzard, ed., HEW Publication (FDA), 77–8002, Rockville, Maryland.Google Scholar
  19. Hart, R., Setlow, R. B., and Woodhead, A., 1977, Evidence that pyrimidine dimers in DNA can give rise to tumors, Proc. Nat. Acad. Sci. USA, 74: 5574.PubMedCrossRefGoogle Scholar
  20. Henderson, E. E., 1978, Host cell reactivation of Epstein-Barr virus in normal and repair-defective leukocytes, Cancer Res., 38: 3256.PubMedGoogle Scholar
  21. Keiner, A., 1949, Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury, Proc. Natl. Acad. Sci. USA, 35: 73.CrossRefGoogle Scholar
  22. Klimek, M., 1966, Thymine dimerization in L-strain mammalian cells after irradiation with ultraviolet light and the search for repair mechanisms, Photochem. Photobiol., 5: 603.PubMedCrossRefGoogle Scholar
  23. Konze-Thomas, B., Dorney, D. J., Maher, V. M. and McCormick, J. J., 1978, Comparing the percent survival and extent of excision repair of thymine dimers following UV irradiation of confluent cultures of human cells or of synchronized populations at various times during the cell cycle, J. Supramol. Structure, Suppl. 2: 77.Google Scholar
  24. Lehmann, A. R., 1975, Postreplication repair of DNA in mammalian cells, Life Sci., 15: 2005.Google Scholar
  25. Ley, R. D., Sedita, B. A., and Grube, D. D., 1978, Absence of photo-reactivation of pyrimidine dimers in the epidermis of hairless mice following exposures to ultraviolet light, Photochem. Photobiol., 27: 483.PubMedCrossRefGoogle Scholar
  26. Lynch, H. T., Lynch, P. M., and Guirgis, H. A., 1980, Host-Environmental Interaction and Carcinogenesis in Man in Genetic Differences in Chemical Carcinogenesis, R. E. Kouri, ed., CRC Press, Boca Raton, Florida.Google Scholar
  27. McDonell, M., Simon, M. N., and Studier, F. W., 1977, Analysis of restriction fragments of T7 DNA and determination of molecular weight by electrophoresis of neutral and alkaline gels, J. Molec. Biol., 110: 119.PubMedCrossRefGoogle Scholar
  28. Muhammed, A., 1966, Studies on the yeast photoreactivating enzyme, J. Biol. Chem., 241, 516.PubMedGoogle Scholar
  29. Pathak, M. A., Kramer, D. M., and Gungerich, U., 1972, Formation of thymine dimers in mammalian skin by ultraviolet radiation in vivo, Photochem. Photobiol., 15, 177.PubMedCrossRefGoogle Scholar
  30. Regan, J. D., and Setlow, R. B., 1973, Repair of chemical damage to human DNA, in: “Chemical mutagens, principles and methods for their detection,” Vol. 3, Plenum Press, New York.Google Scholar
  31. Robbins, J. H., Kraemer, K. H., Lutzner, M. A., Festoff, B. W., and Coon, H. G., 1974, Xeroderma pigmentosum: An inherited disease with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair, Ann. Int. Med., 80: 221.PubMedCrossRefGoogle Scholar
  32. Rupert, C. S., 1960, Photoreactivation of transforming DNA by an enzyme from Baker’s yeast, J. Gen. Physiol., 43: 573.PubMedCrossRefGoogle Scholar
  33. Rupert, C. S., 1962a, Photoenzymatic repair of ultraviolet damage in DNA: I. Kinetics of the reaction, J. Gen. Physiol., 45: 703.PubMedCrossRefGoogle Scholar
  34. Rupert, C. S., 1962b, Photoenzymatic repair of ultraviolet damage in DNA: II. Formation of an enzyme-substrate complex, J. Gen. Physiol., 45: 725.PubMedCrossRefGoogle Scholar
  35. Setlow, J. K., 1964, Effects of UV on DNA: Correlation among biological changes, physical changes and repair mechanisms, Photochem. Photobiol., 3: 405.CrossRefGoogle Scholar
  36. Setlow, J. K., Boling, M. E., and Bollum, F. J., 1965, The chemical nature of photoreactivable lesions in DNA, Proc. Nat. Acad. Sci. USA, 53: 1430.PubMedCrossRefGoogle Scholar
  37. Setlow, R. B., 1966, Cyclobutane-type pyrimidine dimers in polynucleotides, Science, 153: 379.PubMedCrossRefGoogle Scholar
  38. Setlow, R. B., Carrier, W. L., and Bollum, F. J., 1965, Pyrimidine dimers in UV-irradiated poly dI:dC, Proc. Nat. Acad. Sci. USA, 53: 1111.PubMedCrossRefGoogle Scholar
  39. Strickland, P. T., 1978, Pyrimidine dimer formation in epidermal DNA and oncogenesis in rat skin exposed to ultraviolet radiation, Ph.D. Thesis, New York University.Google Scholar
  40. Sutherland, B. M., 1974, Photoreactivating enzyme from human leukocytes, Nature, 248: 109.PubMedCrossRefGoogle Scholar
  41. Sutherland, B. M., 1978, Photoreactivation in mammalian cells, Int. Rev. Cytol., Suppl. 8, 301.CrossRefGoogle Scholar
  42. Sutherland, B. M., 1981, Photoreactivating enzymes, in: “The enzymes,” Vol. 15, Part B (in press), P. Boyer, ed., Academic Press, New York.Google Scholar
  43. Sutherland, B. M. Kochevar, I., and Harber, L., 1980, Pyrimidine dimer formation and repair in human skin, Cancer Res., 40: 3181.PubMedGoogle Scholar
  44. Sutherland, B. M., Rice, M., and Wagner, E. K., 1975, Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme, Proc. Nat. Acad. Sci. USA, 72: 103.PubMedCrossRefGoogle Scholar
  45. Sutherland, B. M., Runge, P., and Sutherland, J. C., 1974, DNA photoreactivating enzyme from placental mammals: origin and characteristics, Biochem., 13: 4710.CrossRefGoogle Scholar
  46. Sutherland, J. C., and Sutherland, B. M., 1975, Human photoreactivating enzyme: action spectrum and safelight conditions, Biophys. J., 15: 435–440.PubMedCrossRefGoogle Scholar
  47. Urbach, F., and Scotto, 1975, Incidence of nonmelanoma skin cancer, in: “Impacts of climatic change on the biosphere,” DOT-TST75–55.Google Scholar
  48. Van der Leun, J. C., and Stoop, T., 1969, Photorecovery of ultraviolet Erythema, in: “The Biologic Effects of Ultraviolet Radiation,” F. Urbach, ed., Pergamon Press, Oxford.Google Scholar
  49. Van Weelden, H., 1979, Photoreactivation in Human Skin, in: “Conference Digest, Europhysics Conference, Lasers in Photomedicine and Phototheraphy,” p. 25.Google Scholar
  50. Wagner, E. K., Rice, M., and Sutherland, B. M., 1975, Photoreactivation of herpes simplex virus in human fibroblasts, Nature, 254: 627.PubMedCrossRefGoogle Scholar
  51. Wulff, D. L., and Rupert, C. S., 1962, Disappearance of thymine photodimer in ultraviolet irradiated DNA upon treatment with a photoreactivating enzyme from Baker’s yeast, Biochem. Biophys. Res., 7: 237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Betsy M. Sutherland
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations