Peptide Mapping and Microsequencing

  • Ian M. Rosenberg


Peptide mapping is a powerful technique used to determine the structure and composition of proteins. Peptide maps or fingerprints of proteolyzed proteins are usually obtained by resolution on either one-dimensional SDS-PAGE, reversed-phase high-performance liquid chromatography (RP-HPLC), or by two-dimensional separation on thin-layer cellulose (TLC) plates.


PVDF Membrane Peptide Mapping Microfuge Tube Cyanogen Bromide Chemical Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken A (1990): Identification of Protein Consensus Sequences. Chichester, England: Ellis HorwoodGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990): Basic local alignment search tool. J Mol Biol 215: 403–410Google Scholar
  3. Boyle WJ, Van der Geer P, Hunter T (1991): Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 201: 110–111CrossRefGoogle Scholar
  4. Celis JE, Rasmussen HH, Leffers H, Madsen P, Honore B, Gesser B, Dejgaard K. Vandekerckhove J (1991): Human cellular protein patterns and their link to genome DNA sequence data: Usefulness of two-dimensional gel electrophoresis and microsequencing. FASEB J 5: 2200–2208Google Scholar
  5. Choli T. Kapp U, Wittmann-Liebold B (1989): Blotting of proteins onto immobilon membranes: In situ characterization and comparison with high performance liquid chromatography. J Chromatogr 476: 59–72CrossRefGoogle Scholar
  6. Cleveland DW, Fischer SG, Kirschner MW. Laemmli UK (1977): Peptide mapping by limited proteolysis in SDS by gel electrophoresis. J Biol Chem 252:1102–1106Google Scholar
  7. Crimmins DL, McCourt DW, Thoma TS, Scott MG, Macke K, Schwartz BD (1990): In situ chemical cleavage of proteins immobilized to glass-fiber and polyvinylidenedifluoride membranes: Cleavage at tryptophan residues with 2-(2’-nitrophenylsulfenyl)-3-methyl-3’-bromoindolenine to obtain internal amino acid sequence. Anal Biochem 187: 27–38CrossRefGoogle Scholar
  8. Degani Y, Patchornik A (1971): Selective cyanylation of sulfhydryl groups. II. On the synthesis of 2-Nitro-5-thiocyanatobenzoic acid. J Org Chem 36: 27–27CrossRefGoogle Scholar
  9. Deshpande KL, Fried VA, Ando M, Webster G (1987): Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci USA 84: 36–40CrossRefGoogle Scholar
  10. Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN (1983): Simian sarcoma virus oncgene, r-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–276CrossRefGoogle Scholar
  11. Downs F, Peterson C, Murty VLN, Pigman W (1977): Quantitation of the beta-elimina- tion reaction as used on glycoproteins. Int J Peptide Protein Res 10: 315–322CrossRefGoogle Scholar
  12. Evans RW, Aitken A, Patel KJ (1988): Evidence for a single glycan moiety in rabbit serum transferrin and location of the glycan within the polypeptide chain. FEBS Lett 238: 39–42CrossRefGoogle Scholar
  13. Fernandez J, DeMott M, Atherton D, Mische SM (1992): Internal protein sequence analysis:enzymatic digestion for less than 10mg of protein bound to polyvinylidene difluoride or nitrocellulose membranes. Anal Biochem 201: 255–264CrossRefGoogle Scholar
  14. Hearn MTW, Aguilar MI (1988): Reversed phase high performance liquid chromatography of peptides and proteins. In: Modern Physical Methods in Biochemistry, Part B, Neuberger A, Van Deenen LLM, eds. Amsterdam: ElsevierGoogle Scholar
  15. Hochstrasser DF, Patchornik A, Merril CR (1988): Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem 173: 412–423CrossRefGoogle Scholar
  16. Hulmes JD, Miedel MC, Pan Y-CE (1989): Strategies for microcharacterization of proteins using direct chemistry on sequencer supports. In: Techniques in Protein Chemistry, Hugh TE, ed. San Diego: Academic PressGoogle Scholar
  17. Inglis AS (1983): Cleavage at aspartic acid. Methods Enzymo 191: 324–332CrossRefGoogle Scholar
  18. Keil B, Tong NT (1988): Database lysis: Computer-assisted investigation of cleavage sites in proteins. In: Methods in Protein Sequence Analysis, Wittman-Liebold B. ed. Heidelberg: Springer-VerlagGoogle Scholar
  19. Kilic F, Ball EH (1991): Partial cleavage mapping of the cytoskeletal protein vinculin. J Bio! Chem 266: 8734–8740Google Scholar
  20. Kostka V, Carpenter FH (1964): Inhibition of chymotrypsin activity in crystalline trypsin preparations. J Bio! Chem 239: 1799–1803Google Scholar
  21. Lin J-H, Wu X-R, Kreibich G, Sun T-T (1994): Precursor sequence, processing and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Bio! Chem 269: 1775–1784Google Scholar
  22. Lipman DJ, Pearson WR (1985): Rapid and sensitive protein similarity searches. Science 227: 1435–1441CrossRefGoogle Scholar
  23. Lischwe MA, Sung MA (1977): Use of N-chlorosuccinimide/urea for the selective cleavage of tryptophanyl peptide bonds in proteins. J Bio! Chem 252: 4976–4980Google Scholar
  24. Matsudaira P (1987): Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Bio! Chem 262: 10035–10038Google Scholar
  25. Matsudaira PT, ed. (1989): A Practical Guide to Protein and Peptide Purification for Microsequencing. San Diego: Academic PressGoogle Scholar
  26. Miczka G, Kula MR (1989): The use of polyvinylidene difluoride membranes as blotting matrix in combination with sequencing; applications to pyruvate decarboxylase from Zymomonas mobilis. Anal Lett 22: 2771–2782CrossRefGoogle Scholar
  27. Moore S, Stein WH (1963): Chromatographic determination of amino acids by the use of automatic recording equipment. Methods Enzymo! 6: 819–831CrossRefGoogle Scholar
  28. Moos M, Nguyen NY, Liu T-Y (1988): Reproducible, high yield sequencing of proteins electrophoretically separated and transferred to an inert support. J Bio! Chem 263: 6005–6008Google Scholar
  29. Nefsky B, Bretscher A (1989): Landmark mapping: A general method for localizing cysteine residues within a protein. Proc Nat! Acad Sci USA 86: 3549–3553CrossRefGoogle Scholar
  30. Rasmussen HH. Van Damme J, Bauw G, Puype M, Gesser B, Celis JE, Vandekerckhove J (1991): Protein electroblotting and microsequencing in establishing integrated human protein databases. In: Methods in Protein Sequence Analysis, Jörnvall H. Höög JO, eds. Basel: Birkhäuser VerlagGoogle Scholar
  31. Reig J, Klein DC (1988): Submicrogram quantities of unstained proteins are visualized on polyvinylidene difluoride membranes by transillumination. App! Theor Electrophoresis 1: 59–60Google Scholar
  32. Saris CJM, van Eenbergen J, Jenks BG, Bloemers HPJ (1983): Hydroxylamine cleavage of proteins in polyacrylamide gels. Anal Biochem 132: 54–67CrossRefGoogle Scholar
  33. Scott MG, Crimmins DL, McCourt DW, Tarrand JJ, Eyerman MC, Nahm, MH (1988): A simple in situ cyanogen bromide cleavage method to obtain internal amino acid sequence of proteins electroblotted to polyvinyldifluoride membranes. Biochem Biophys Res Commun 155: 1353–1359CrossRefGoogle Scholar
  34. Stone KL, LoPresti MB, Crawford JM, DeAngelis R, Williams KR (1989): Reverse-phase HPLC separation of sub-nanomole amounts of peptides obtained from enzymatic digests. In: HPLC of Peptides and Proteins: Separation, Analysis and Conformation, Hodges RS, ed. Boca Raton: CRC PressGoogle Scholar
  35. Vanfleteren JR, Raymackers JG, Van Bun SM, Meheus LA (1992): Peptide mapping and microsequencing of proteins separated by SDS-PAGE after limited In Situ acid hydrolysis. Bio Techniques 12: 551–557Google Scholar
  36. Vorburger K, Kitten GT, Nigg EA (1989): Modification of nuclear lamin proteins by a mevalonic acid derivative occurs in reticulocyte lysates and requires the cysteine residue of the C-terminal CXXM motif. EMBO J 8: 4007–4013Google Scholar
  37. Waterman MS, Vingron M (1994): Rapid and accurate estimates of statistical signifi-cance for sequence data base searches. Proc Nat! Acad Sci USA 91: 4625–4628MATHCrossRefGoogle Scholar
  38. Weber K, Osborn M (1975): Proteins and sodium dodecyl sulfate: Molecular weight determination on polyacrylamide gels and related procedures. In: The Proteins, Vol I, Neurath H, Hill RL, eds. New York: Academic PressGoogle Scholar
  39. Wilbur WJ, Lipman DJ (1983): Rapid similarity searches of nucleic acid and protein data banks. Proc Nat! Acad Sci USA 80: 726–730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ian M. Rosenberg
    • 1
  1. 1.Massachusetts General HospitalBostonUSA

Personalised recommendations