Compact Riemann Surfaces

  • Raghavan Narasimhan


In this chapter, we introduce Riemann surfaces and prove an important theorem which asserts that meromorphic functions on a compact Riemann surface form an algebraic function field in one variable (see § 6). The chapter is meant to serve as an introduction to some tools which have proved to be very useful in several branches of mathematics, in particular, in several complex variables and algebraic geometriy.


Banach Space Riemann Surface Meromorphic Function Open Covering Compact Riemann Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bers, L.: Uniformization, moduli and Kleinian groups. Bull. Lond. Math. Soc. 4 (1972), 257–300.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Calabi, E. and M. Rosenlicht : Complex analytic manifolds without countable base. Proc. Amer. Math. Soc. 4 (1953), 335–340.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Cartan, H. : Séminaire, École Normale Supérieure, 1953/54. Reprint: Benjamin, 1967.Google Scholar
  4. [4]
    Cartan, H. and J. P. Serre. Un théorème de finitude concernant les variétés analytiques compactes. C. R. Acad. Sci. Paris 237 (1953), 128–130.MathSciNetMATHGoogle Scholar
  5. [5]
    Chevalley, C. : Introduction to the theory of algebraic functions of one variable. Amer. Math. Soc. Publications, 1951.MATHGoogle Scholar
  6. [6]
    De Rham, G.: Sur les polygônes générateurs de groupes fuchsiens. L’Ens. Math. 17 (1971), 49–61.MATHGoogle Scholar
  7. [7]
    Farkas, H. and I. Kra : Riemann surfaces. Springer, 1980.MATHGoogle Scholar
  8. [8]
    Forster, O. : Riemannsche Flächen. Springer, 1977. (English translation : Riemann Surfaces, Springer, 1981).MATHCrossRefGoogle Scholar
  9. [9]
    Grauert, H.: On Levi’s problem and the imbedding of real analytic manifolds. Annals of Math. 68 (1958), 460–472.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Griffiths, P. A. and J. Harris : Principles of algebraic geometry. New York: Wiley, 1978.MATHGoogle Scholar
  11. [11]
    Heins, M. : Complex function theory. New York : Academic Press, 1968.MATHGoogle Scholar
  12. [12]
    Nevanlinna, R.: Uniformisierung. Springer, 1973.Google Scholar
  13. [13]
    Pfluger, A. Theorie der Riemannschen Flächen. Springer, 1957.MATHCrossRefGoogle Scholar
  14. [14]
    Radó, T.: Über den Begriff der Riemannschen Fläche. Acta Sci. Math. Szeged. 2 (1925), 101–121.MATHGoogle Scholar
  15. [15]
    Riemann, B.: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Collected Works. 3–45.Google Scholar
  16. [16]
    Riemann, B.: Theorie der Abel’schen Functionen. Borchardt’s Journal 54 (1857). Collected Works, 88–142.Google Scholar
  17. [17]
    Schwartz, L.: Homomorphismes et applications complètement continues. C. R. Acad. Sci. Paris 236 (1953), 2472–2473.MathSciNetMATHGoogle Scholar
  18. [18]
    Serre, J. P.: Groupes algébriques et corps de classes. Paris, 1959.MATHGoogle Scholar
  19. [19]
    Springer, G.: Introduction to Riemann surfaces. Addison-Wesley, 1957.MATHGoogle Scholar
  20. [20]
    Weyl, H.: Die Idee der Riemannschen Fläche, 2nd ed. Teubner, 1923 (Chelsea reprint : 1947).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations