The Riemann Mapping Theorem and Simple Connectedness in the Plane

  • Raghavan Narasimhan


In this chapter, we shall prove that any simply connected open set in ℂ, which is not all of ℂ, is analytically isomorphic to the unit disc D= {z∊ℂ∣∣z∣<1}. The proof will also enable us to characterize simple connectedness in several ways.


Riemann Surface Blaschke Product Simple Connectedness Uniformization Theorem Riemann Mapping Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bers, L.: Uniformization, moduli and Kleinian groups. Bull. Lond. Math. Soc. 4 (1972), 257–300.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Carathéodory, C. : Conformal representation. Cambridge University Press, 1952.MATHGoogle Scholar
  3. [3]
    Diederich, K. and I. Lieb : Konvexität in der komplexen Analysis. Boston: Birkhäuser, 1981.MATHGoogle Scholar
  4. [4]
    Forster, O. : Riemannsche Flächen, Springer, 1977 (English translation: Riemann Surfaces, Springer, 1981).MATHCrossRefGoogle Scholar
  5. [5]
    Hilbert, D.: Über das Dirichletsche Prinzip. Math. Annalen 59 (1904), 161–186. Collected Works, vol. 3, pp.15–37.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Hurwitz, A. and R. Courant : Funktionentheorie, Springer, 1964. 4th ed. with an appendix by H. Röhrl.MATHGoogle Scholar
  7. [7]
    Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven. Göttinger Nachr. (1907), 191–210 and 633–669.Google Scholar
  8. [8]
    Koebe, P.: Abhandlungen zur Theorie der konformen Abbildung. I. Jour. f. die reine u. angew. Math. (Crelle’s Journal) 145 (1915), 177–223.MATHGoogle Scholar
  9. [9]
    Osgood, W. F.: On the existence of Green’s function for the most general simply connected plane region. Trans. Amer. Math. Soc. 1 (1900), 310–314.MathSciNetMATHGoogle Scholar
  10. [10]
    Poincaré, H.: Sur l’uniformisation des fonctions analytiques. Acta Math. 31 (1908), 1–63.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Riemann, B.: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Collected Works, 3–45.Google Scholar
  12. [12]
    Schwarz, H. A.: Zur Theorie der Abbildung. Programm der eidgenössischen technischen Schule in Zürich, 1869/1870; collected works, vol. 2, 108–132.Google Scholar
  13. [13]
    Weyl, H.: Die Idee der Riemannschen Fläche, 2nd ed. Teubner, 1923. Chelsea reprint 1947.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations