Applications of Runge’s Theorem

  • Raghavan Narasimhan


This chapter is devoted to various theorems which can be proved using Runge’s theorem : the existence of functions with prescribed zeros or poles, a “cohomological” version of Cauchy’s theorem, and related theorems. The last section concerns itself with . (Ω) as a ring (or ℂ-algebra).


Meromorphic Function Common Zero Stein Manifold Column Operation Discrete Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Chapter 6

  1. [1]
    Bers, L.: On rings of analytic functions, Bull. Amer. Math. Soc. 54 (1948), 311–315.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Borel, E.: Sur les zéros des fonctions entières, Acta Math. 20 (1897), 357–396.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Cartan, H.: Séminaire, École Normale Supérieur., Paris, 1951/52. (Reprint: Benjamin, 1967.)Google Scholar
  4. [4]
    Forster, O. : Riemannsche Fläche., Springer, 1977. (English translation : Riemann Surface., Springer, 1981.)CrossRefMATHGoogle Scholar
  5. [5]
    Forster, O.: Uniqueness of topology in Stein algebras, in Proc. of an Internat. Symp., Tulane Univ., 196. (Scott-Foresman, 1966), pp. 157–163.Google Scholar
  6. [6]
    Heins, M.: Complex Function Theory. New York: Academic Press, 1968.MATHGoogle Scholar
  7. [7]
    Helmer, O.: The elementary divisor theorem for certain rings without chain condition. Bull. Amer. Math. Soc. 49 (1943), 225–236.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Hörmander, L.: An introduction to complex analysis in several variable.. 2nd ed., North-Holland, 1973.MATHGoogle Scholar
  9. [9]
    Is’sa, H.: On the meromorphic function field of a Stein variety, Annals of Mat.. 83 (1966), 34–46.CrossRefGoogle Scholar
  10. [10]
    Mittag-Leffler, G.: Sur la représentation analytique des fonctions monogènes uniformes d’une variable indépendente, Acta Mat.. 4 (1884), 1–79.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Nakai, M. : On rings of analytic functions on Riemann surfaces, Proc. Japan. Acad. 39 (1963), 79–84.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Oka, K.: Sur les fonctions analytiques de plusieurs variable., Iwanami Shoten, Tokyo, 1960. (Contains nine of Oka’s papers. Oka’s papers, translated into English, and with a commentary by H. Cartan, have been edited by R. Remmert for Springer, 1984.)Google Scholar
  13. [13]
    Runge, C.: Zur Theorie der eindeutigen analytischen Funktionen, Acta Mat.. 6 (1885), 229–244.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Wedderburn, J. H. M. : On matrices whose coefficients are functions of a single variable. Trans. Amer. Math. Soc. 16 (1915), 328–332.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Weierstrass, K.: Zur Theorie der eindeutigen analytischen Funktionen einer Veränderlichen. Abh. der königl. Akad. Wiss. zu Berli. 1876, 11–60. (Collected Work. vol. 2, pp. 77–124.)Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations