Random Movements in Space and Time

  • Edward K. Yeargers
  • Ronald W. Shonkwiler
  • James V. Herod


Many biological phenomena, at all levels of organization, can be modeled by treating them as random processes, behaving much like the diffusion of ink in a container of water. In this chapter we discuss some biological aspects of random processes, namely the movement of oxygen across a human placenta and the spread of infectious diseases. While these processes might seem to be quite different at first glance, they actually act according to very similar models.


Random Walk Random Movement Oxygen Affinity Fetal Hemoglobin Countercurrent Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggested Further Reading

  1. 1.
    Membrane structure: William S. Beck, Karel F. Liem and George Gaylord Simpson; Life: An Introduction to Biology, 3rd ed., Harper Collins Publishers, New York, 1991.Google Scholar
  2. 2.
    Membrane transport: Edward K. Yeargers, Basic Biophysics for Biology, CRC Press, Inc., Boca Raton, 1992.Google Scholar
  3. 3.
    Diffusion: Russell K. Hobbie, Intermediate Physics for Medicine and Biology, John Wiley and Sons, 2nd ed, New York, p. 65, 1988.Google Scholar
  4. 4.
    Diffusion: H. C. Berg, Random Walks in Biology, Princeton University Press, Princeton, NJ, 1993Google Scholar
  5. 5.
    Diffusion in Biology: J. D. Murray, Mathematical Biology, Springer-Verlag, New York. 1989.MATHGoogle Scholar
  6. 6.
    Fluid resistance: S.I. Rubinow, Introduction to Mathematical Biology, John Wiley and Sons, New York, 1975.MATHGoogle Scholar
  7. 7.
    Diffusion across a slab: David L. Powers, Boundary Value Problems, Academic Press, New York, 1979.MATHGoogle Scholar
  8. 8.
    Oxygen dissociation curves, fetal blood: William T. Keeton and James L. Gould, Biological Science, 5th ed. W. W. Norton and Company, New York, 1993.Google Scholar
  9. 9.
    Placenta: H. Bartels, W. Moll, J. Metcalfe, Physiology of gas exchange in the human placenta, Am. J. Obstet. Gynecol. 84, 1714–1730, 1962.Google Scholar
  10. 10.
    Placenta: J. Metcalfe, H. Bartels, W. Moll, “Gas Exchange in the Pregnant Uterus,” Physio. L Rev. 47, 782–838, 1967.Google Scholar
  11. 11.
    Placenta: R. E. Forster II, “Some Principles Governing Maternal—Foetal Transfer in the Placenta,” Foetal and Neonatal Physiology, Cambridge University Press, Cambridge, 223–237, 1973.Google Scholar
  12. 12.
    Placenta: K. S. Comline, K. W. Cross, G. S. Dawes, P. W. Nathanielsz, Foetal and Neonatal Physiology, Cambridge University Press. Cambridge. 1973.Google Scholar
  13. 13.
    Placenta: F. C. Battaglia, G. Meschia, An Introduction to Fetal Physiology, Academic Press, Inc., Harcourt Brace Jovannovich, New York, 1986.Google Scholar
  14. 14.
    Placenta: A. Guettouche, et. al., Mathematical Modeling of the Human Fetal Arterial Blood Circulation, Int. J. Biomed. Comput. 31, 127–139, 1992.CrossRefGoogle Scholar
  15. 15.
    Placenta: A. Costa, M. L. Costantino, R. Fumero, Oxygen exchange mechanisms in the human placenta: mathematical modelling and simulation, J. Biomed. Eng. 14, 85–389, 1992.CrossRefGoogle Scholar
  16. 16.
    Epidemiology: John P. Fox, Carrie E. Hall and Lila R. Elveback, Epidemiology: Man and Disease, The Macmillan Company, New York, 1970.Google Scholar
  17. 17.
    Epidemiology and disease: Julius P. Krier and Richard F. Mortenson, Infection, Resistance and Immunity, Harper and Row, Publishers, New York, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Edward K. Yeargers
    • 1
  • Ronald W. Shonkwiler
    • 2
  • James V. Herod
    • 2
  1. 1.School of BiologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations