The Primes Viewed at Large

  • Hans Riesel
Part of the Progress in Mathematics book series (PM, volume 57)


Not very much is known about the distribution of the primes. On one hand, their distribution in short intervals seems extremely irregular. This is the reason why it appears impossible to find a simple formula describing the distribution of the primes in any detail. On the other hand, the distribution of the primes, viewed at large, can be very well approximated by simple formulas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James F. Jones, Daihachiro Sato, Hideo Wada and Douglas Wiens, “Diophantine Representation of the Set of Prime Numbers,” Am. Math. Monthly 83 (1976) pp. 449–464.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Oxford, 1979, pp. 359–367.MATHGoogle Scholar
  3. 3.
    D. J. Newman, “Simple Analytic Proof of the Prime Number Theorem,” Am. Math. Monthly 87 (1980) pp. 693–696.MATHCrossRefGoogle Scholar
  4. 4.
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, New York, 1953. (Reprint.)MATHGoogle Scholar
  5. 5.
    J. van de Lune and H. J. J. te Riele, “On the Zeros of the Riemann Zeta function in the Critical Strip, III,” Math. Comp. 41 (1983) pp. 759–767.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J. van de Lune and H. J. J. te Riele, “Recent Progress on the Numerical Verification of the Riemann Hypothesis,” CWI Newsletter No. 2 (March 1984) pp. 35–37, and Private communication.Google Scholar
  7. 7.
    Hans Riesel and Gunnar Göhl, “Some Calculations Related to Riemann’s Prime Number Formula,” Math. Comp. 24 (1970) pp. 969–983.MathSciNetMATHGoogle Scholar
  8. 8.
    A. Walfisz, Weylsche Exponentialsummen in der neueren Zahkentheorie, VED Deutscher Verlag der Wissenschaften, Berlin, 1963.Google Scholar
  9. 9.
    W. J. Ellison and M. Mendès France, Les Nombres Premiers, Hermann, Paris, 1975.MATHGoogle Scholar
  10. 10.
    J. Barkley Rosser and L. Schoenfeld, “Approximate Formulas for Some Functions of Prime Numbers,” Ill. Journ. Math. 6 (1962) pp. 64–94.MathSciNetMATHGoogle Scholar
  11. 11.
    Guy Robin, “Estimation de la Fonction de Tchebychef Θ sur le k-ième Nombre Premier et Grandes Valeurs de la Fonction w(n) Nombre de Diviseurs Premiers den,”Acta Arith. 52 (1983) pp. 367–389.MathSciNetGoogle Scholar
  12. 12.
    Harold G. Diamond, “Elementary Methods in the Study of the Distribution of Prime Numbers,” Bull. Am. Math. Soc., New Series 7 (1982) pp. 553–589.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Hans Riesel
    • 1
  1. 1.VällingbySweden

Personalised recommendations