The Physical Basis of Electrophysiological Brain Imaging: Exploratory Techniques for Source Localization and Waveshape Analysis of Functional Components of Electrical Brain Activity

  • Roberto D. Pascual-Marqui
  • Rolando Biscay Lirio
  • Pedro A. Valdés-Sosa


One of the fundamental problems of electrophysiology is the determination of the neuronal generators corresponding to the functional components of brain electrical activity, based on measurements of scalp voltage differences. The solution to this problem (inverse problem of electrophysiology) would be a new type of tomography producing three-dimensional (3D) images containing functional information about the brain.


Inverse Problem Brain Image Inverse Solution Neuronal Generator Brain Electrical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, C.T.H. (1977): The numerical treatment of integral equations. Oxford: Cambridge University PressGoogle Scholar
  2. Barr, R.E., Chan, E.K.Y. (1986): Design and implementation of digital filters for biomedical signal processing. J. Electrophysiol. Tech. 13, 73–91Google Scholar
  3. Besag, J. (1986): On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. B48, 259–302Google Scholar
  4. Besse, P., Ramsay, J.O. (1986): Principal components analysis of sampled functions. Psychometrika 51, 285–311CrossRefGoogle Scholar
  5. Biscay-Lirio, R., Pascual-Margui, R.D. (1989): Crossvalidation techniques for estimating dimensionality in general component models. (in preparation)Google Scholar
  6. Censor, Y. (1983): Finite series-expansion reconstruction methods. Proc. IEEE 71, 409–418CrossRefGoogle Scholar
  7. Duffy, F.H. (1986): Topographic mapping of electrical brain activity. Boston: Butter-worthsGoogle Scholar
  8. Fender, D.H. (1987): Source localization of brain electrical activity. In: Handbook of electroencephalography and clinical neurophysiology, revised series: vol. 1. Methods of analysis of brain electrical and magnetic signals. Gevins, A.S., Redmond, A. (eds.). Amsterdam: Elsevier, pp. 355–403Google Scholar
  9. Goldberg, M.A. (1979): Solution methods for integral equations: Theory and applications. New York: Plenum PressGoogle Scholar
  10. Gonzalez, S., Grave de Peralta, R., Biscay, R., Jimenez, J.C., Pascual, R.D., Lemagne, J., Valdes, P.A. (1989a): Projective methods for the magnetic direct problem. In: Advances in biomagnetism, New York: Plenum. (submitted)Google Scholar
  11. Gonzalez, S., Pascual, R.D., Valdes, P.A., Biscay, R., Machado, C., Diaz, G., Figueredo, P., Castro, C. (1989b): Brain electrical field measurements unaffected by linked earlobes reference. Electroenceph. Clin. Neurophysiol. (in press)Google Scholar
  12. Hamalainen, M.S., Sarvas, J. (1987): Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. Report TKK-F-A614. Helsinki: Helsinki University of Technology 458 VII. Bra in ImagingGoogle Scholar
  13. Henderson, C.J., Butler, S.R., Glass, A. (1975): The localization of equivalent dipoles of EEG sources by the application of electrical field theory. Electroenceph. Clin. Neurophysiol. 39, 117–130CrossRefGoogle Scholar
  14. Ilmoniemi, R.J., Williamson, S.J., Hostetler, W.E. (1987): New method for the study of spontaneous brain activity. In: Biomagnetism ‘87–6th International Congress on Bio-magnetism–Tokyo. Atsumi, K., Kotani, M., Ueno, S., Katila, T., Williamson, S.J. (eds.). Tokyo: Tokyo Denki University Press, pp. 182–185Google Scholar
  15. Jackson, J.D. (1975): Classical electrodynamics. New York: John Wiley and SonsGoogle Scholar
  16. Jeffs, B., Leahy, R., Singh, M. (1987): An evaluation of methods for neuromagnetic image reconstruction. IEEE Trans. Biomed. Eng. BME34, 713–723Google Scholar
  17. Katznelson, R.D. (1981): EEG recording, electrode placement and aspects of generator localization. In: Electrical fields of the brain. Nunez, P. (ed.). New York: Oxford University Press, pp. 176–213Google Scholar
  18. Kavanagh, R.N., Darcey, T.M., Lehmann, D., Fender, D.H. (1978): Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans. Biomed. Eng. BME5, 421–429Google Scholar
  19. Lehmann, D. (1987): Principles of spatial analysis. In: Handbook of electroencephalography and clinical neurophysiology, revised series: vol 1. Methods of analysis of brain electrical and magnetic signals. Gevins, A.S., Remond, A. (eds.). Amsterdam: Elsevier, pp. 309–354Google Scholar
  20. Lehmann, D., Shandies, W. (1980): Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph. Clin. Neurophysiol. 48, 609–621CrossRefGoogle Scholar
  21. Lehmann, D., Ozaki, H., Pal, I. (1987): EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroenceph. Clin. Neurophysiol. 67, 271–288CrossRefGoogle Scholar
  22. Lopes Da Silva, F., Hoeks, A., Zetterberg, L. (1974): Model of brain rhythmic activity: The alpha rhythm of the thalamus. Kybernetik 15, 27–37CrossRefGoogle Scholar
  23. Meijs, J.W.H., Boom, H.B.K., Peters, M.J., Van Oosterom, A. (1987): Application of the Richardson extrapolation in simulation studies of EEGs. Med. Biol. Eng. Comput. 25, 222–226CrossRefGoogle Scholar
  24. Mocks, J. (1987): Decomposing event related potentials: A new topographic components model. Presented at Fourth International Conference on Cognitive Neurosciences, Dourdan, FranceGoogle Scholar
  25. Nunez, P. (1981): Electrical fields of the brain. New York: Oxford University Press, p. 150Google Scholar
  26. Offner, F.F. (1950): The EEG as potential mapping: The value of the average monopolar reference. Electroenceph. Clin. Neurophysiol. 2, 215–216CrossRefGoogle Scholar
  27. Oppenheim, A.V., Schafer, R.W. (1975): Digital signal processing, Englewood Cliffs, NJ: Prentice-HallGoogle Scholar
  28. Pascual-Marqui, R.D., Gonzalez-Andino, S.L., Valdes-Sosa, P.A., Biscay-Lirio, R. (1989): Current source density estimation and interpolation based on the spherical harmonic Fourier expansion. Int. J. Neurosci. (in press)Google Scholar
  29. Perrin, F., Bertrand, O., Pernier, J. (1987): Scalp current density mapping: Value and estimation from potential data. IEEE Trans. Biomed. Eng. BME34, 283–288Google Scholar
  30. Plonsey, R. (1969): Biomagnetic phenomena. New York: McGraw-Hill, p. 203Google Scholar
  31. Prenter, P.M. (1975): Splines and variational methods. New York: John Wiley and SonsGoogle Scholar
  32. Sarvas, J. (1987): Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22CrossRefGoogle Scholar
  33. Scherg, M., Von Cramon, D. (1985a): Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroenceph. Clin. Neurophysiol. 62, 32–44CrossRefGoogle Scholar
  34. Scherg, M., Von Cramon, D. (1985b): A new interpretation of the generators of BAEP waves I-V: Results of a spatio-temporal dipole model. Electroenceph. Clin. Neurophysiol. 62, 290–299CrossRefGoogle Scholar
  35. Scherg, M., Von Cramon, D. (1986): Evoked dipole source potentials of the human auditory cortex. Electroenceph. Clin. Neurophysiol. 65, 344–360CrossRefGoogle Scholar
  36. Sencaj, R.W., Aunon, J.I. (1982): Dipole localization of average and single visual evoked potentials. IEEE Trans. Biomed. Eng. BME29, 26–33CrossRefGoogle Scholar
  37. Stok, C.J. (1987): The influence of model parameters on EEG/MEG single dipole source estimation. IEEE Trans. Biomed. Eng. BME34, 289–296CrossRefGoogle Scholar
  38. Van Petten, C., Kutas, M. (1988): The use of event-related potentials in the study of brain asymmetries. Int. J. Neurosci. 39, 91–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Roberto D. Pascual-Marqui
  • Rolando Biscay Lirio
  • Pedro A. Valdés-Sosa

There are no affiliations available

Personalised recommendations