Brain Stimulation of Comatose Patients: A Chaos and Nonlinear Dynamics Approach

  • Robert W. Thatcher


A recent and important contribution to the neurophysiological bases of human consciousness lies in the application of the mathematics of nonlinear dynamics or chaos theory to human electrophysiology. Recently, Freeman (1987a; 1987b) has used chaos theory to model state changes in the electroencephalogram (EEG), in which a relatively small number of parameters can determine brain state from seizure, deep anesthesia, sleep, awakeness, etc. One advantage of the nonlinear dynamic models of neural networks is simplification, whereby a small number of parameter changes can result in large-system state changes that may involve billions of individually interacting elements (Thompson and Stewart, 1986). Another advantage is the consistency of mathematics from the laws of physics to the laws of biology in which common, and often poorly understood, phenomena are explained by a single mathematical model (Peitgen and Richter, 1986; Swinney, 1983; Swinney and Gollub, 1981; Swinney and Roux, 1984; Thompson and Stewart, 1986).


Lyapunov Exponent Brain Stimulation Reticular Formation Glasgow Coma Score Brain State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K., Koella, W., Hess, R. (1952): Sleep produced by electrical stimulation of the thalamus. Am. J. Physiol. 168, 260–267Google Scholar
  2. Akimoto, H., Yamaguchi, N., Okabe J., Nakagawa, T., Nakamura, I., Abe, K., Torri, H., Masahashi, K. (1956): On sleep induced through electrical stimulation of dog thalamus. Folia. Psychiatry Neurol. 10, 117–146Google Scholar
  3. Bach, L., Magoun, H.W. (1947): The vestibular nuclei as an excitatory mechanism for the cord. J. Neurophysiol. 5, 331–337Google Scholar
  4. Batini, C., Moruzzi, G., Palestini, M., Rossi, G., Zanchetti, A. (1959): Effects of complete pontine transections on the sleep-wakefulness rhythm: The midpontine pretrigeminal preparation. Arch. ItaL Biol. 97, 1–12Google Scholar
  5. Bendat, J.S., Piersol, A.G. (1980): Engineering applications of correlation and spectral analysis. New York: John Wiley and SonsGoogle Scholar
  6. Bricolo, A., Turazzi, S., Faccioli, F., Odorizzi, F., Sciarretta, G., Erculiani, P. (1978): Application of compressed spectral array in long-term EEG monitoring of comatose patients. Electroenceph. Neurophysiol 45, 221–225Google Scholar
  7. Economo, C. Von. (1918): Die Encephalitis Lethargica. Vienna: Deuticke. Cited in Ochs, S. (1965): Elements of neurophysiology. New York: John Wiley and SonsGoogle Scholar
  8. Evarts, E.V. (1964): Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J. Neurophysiol. 27, 152–171Google Scholar
  9. Fanner, J.D., Ott, E., Yorke, J.E. (1983): The dimension of chaotic attractors. Physica 7D, 153–180Google Scholar
  10. Freeman, W.J. (1975): Mass action in the nervous system. New York: Academic Press Freeman, W.J. (1987a): Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139–150Google Scholar
  11. Freeman, W.J. (1987b): Analytic techniques used in the search for the physiological basis of the EEG. In: Methods of analysis of brain electrical and magnetic signals. EEG handbook (revised series, vol. 1). Gevins, A.S., Remond, A. (eds.). Amsterdam: ElsevierGoogle Scholar
  12. Fulton, J.F., Bailey, P. (1929): Tumors in the region of the third ventricle: Their diagnosis and relation to pathological sleep. J. Nerv. Ment. Dis. 69, 1–25CrossRefGoogle Scholar
  13. Gasteau, H., Jus, A., Jus, C., Morrell, F., Storm Van Leewen, W., Dongier, S., Naquet, R., Regis, H., Roger, A., Bekkering, D., Kamp, A., Werre, J. (1957): Etude topographique des reactions electroencephalographiques conditioners chez l’homme. Electroenceph. Clin. Neurophysiol. 9, 1–14CrossRefGoogle Scholar
  14. Grassberger, P., Procaccia, I. (1983a): Characterization of strange attractors. Phys. Rev. Lett. 50, 346–249CrossRefGoogle Scholar
  15. Grassberger, P., Procaccia, I. (1983b): Measuring the strangeness of strange attractors. Physica 9D;, 189–208Google Scholar
  16. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.A. (1984): Strange attractors that are not chaotic. Physica 13D, 261–268Google Scholar
  17. Hassler, R. (1979): Striatal regulation of adverting and attention directing induced by pallidal stimulation. Appt. Neurophysiol 42, 98–102Google Scholar
  18. Hassler, R., Dalle, G., Bricolo, A., Dieckmann, G., Dolce, G. (1969): Behavioral and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome. Electroenceph. Clin. Neyurophysiol. 27, 306–310Google Scholar
  19. Hernandez, R.S. (1988): The effects of task condition on the correlation of EEG coherence and full-scale IQ. Doctoral dissertation, Maharishi International University, IndiaGoogle Scholar
  20. Hernandez-Peon, R., Chavez-Ibarra, G. (1963): Sleep induced by electrical or chemicalstimulation of the forebrain. Electroenceph. Clin. Neurophysiol. 24 (Suppl.), 118–198Google Scholar
  21. Hernandez-Peon, R., Chavez-Ibarra, G., Morgane, P.J., Timo-laria, C. (1963): Limbic cholinergic pathways involved in sleep and emotional behavior. Exp. Neurol. 8, 93–111CrossRefGoogle Scholar
  22. Hess, R., Koella, W.P., Akert, K. (1953): Cortical and subcortical recordings in natural and artificially induced sleep in cats. Electroenceph. Clin. Neurophysiol. 5, 75–90CrossRefGoogle Scholar
  23. Hess, W.R. (1954): Diencephalon-autonomic and extra pyramidal functions. New York: Grune and StrattonGoogle Scholar
  24. John, E.R. (1967): Mechamisms of memory. New York: Academic PressGoogle Scholar
  25. John, E.R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., Kaye, H. (1980): Developmental equations for the EEG. Science 210, 1255–1258CrossRefGoogle Scholar
  26. Jouvet, M. (1969): Biogenic amines and the states of sleep. Science 163, 32–41 Kawahara, T. (1980): Coupled Van der Pol oscillators: A model of excitatory and inhibitory neural interactions. Biot. Cybernet. 39, 37–43Google Scholar
  27. Langfitt, T.W., Gennarelli, T.A. (1982): Can the outcome from head injury be improved? J. Neurosurg. 56, 19–25CrossRefGoogle Scholar
  28. Lindsley, D.B. (1950): Emotions and the electroencephalogram. In: Feelings and emotions: The Mooseheart Symposium. Reymert, M.L. (ed.). New York: McGraw-HillGoogle Scholar
  29. Lindsley, D.B., Schreiner, L., Magoun, H.W. (1949): An lectromyographic study of spasticity. J. Neurophysiol. 12, 197–205Google Scholar
  30. Lopes da Silva, F.H., Van Lierop, T.H., Schrijer, C.F., Storm van Leeuwen, W. (1974): Organization of thalamic and cortical alpha rhythms- Spectra and coherences. Electroenceph. Clin. Neurophysiol 35, 627–639CrossRefGoogle Scholar
  31. Luria, A.R. (1973): The working brain. Middlesex, England: Pengu in PressGoogle Scholar
  32. Magni, F., Moruzzi, G., Rossi, G.F., Zanchetti, A. (1959): EEG arousal following inactivation of the lower brain stem by selective injection of barbiturate into lower brain stem circulation. Arch. Ital. Biol. 97, 33–46Google Scholar
  33. Magoun, H.W., Rhines, R. (1948): Spasticity: The stretch reflex and extrapyramidal systems. Springfield, IL: Charles C. ThomasGoogle Scholar
  34. Mandelbrot, B. (1977): Fractals: Form, chance and dimension. San Francisco: Freeman Publishing Co.Google Scholar
  35. Matousek, M., Petersen, I. (1973): Frequency analysis of the EEG background activity by means of age dependent EEG quotients. In: Automation of clinical electroencephalography. Kellaway, P., Petersen, I. (eds.). New York: Raven PressGoogle Scholar
  36. Morrell, F. (1962): Electrophysiological contributions to the neural basis of learning. Physiol. Rev. 41, 443–476Google Scholar
  37. Moruzzi, G (1960): Synchronizing influences of the brain stem and the inhibitory mechanisms underlying the production of sleep by sensory stimulation. The Moscow Colloquim on Electroencephalography of Higher Nervous Activity, Electroencephalography and Clinical Neurophysiology 13, 231–256Google Scholar
  38. Moruzzi, G, Magoun, H.W. (1949): Brain stem reticular formation and activation of the EEG. Electroenceph. Clin. Neurophysiol. 1, 455–473Google Scholar
  39. Nauta, W.J.H. (1946): Hypothalamic regulation of sleep in rats: An experimental study. J. Neurophysiol. 9, 285–316Google Scholar
  40. Nunez, P. (1981): Electric fields of the brain: The neurophysics of EEG. New York: Oxford University PressGoogle Scholar
  41. Peitgen, H.O., Richter, P.H. (1986): The Beauty of fractals. New York:Google Scholar
  42. Springer-Verlag Ruelle, D. (1983): Five turbulent problems. Physica 7D, 40–44Google Scholar
  43. Schaeffer, W.M. Truty, G.L., Fulmer, S. (1988): Dynamical software: vols. I and I I Tucson: Dynamical Systems, Inc.Google Scholar
  44. Shannon, C.E., Weaver, W. (1949): The mathematical theory of communication. Urbana, IL: University of Illinois PressGoogle Scholar
  45. Skarda, C.A., Freeman, W.J. (1987): How brains make chaos in order to make sense of the world. Behay. Brain Sci. 10, 161–195CrossRefGoogle Scholar
  46. Swinney, H.L. (1983): Observations of order and chaos in nonlinear systems. Physica 7D, 3–15Google Scholar
  47. Swinney, H.L., Gollub, J.P. (eds.). (1981): Hydrodynamic instabilities and the transition to turbulence. New York: Springer-VerlagGoogle Scholar
  48. Swinney, H.L., Roux, J.C. (1984): Chemical chaos. In: Nonequilibrium dynamics in chemical systems. Vidal, C. (ed.). New York: Springer-VerlagGoogle Scholar
  49. Takens, F. (1980): Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. In: Springer lecture notes in mathematics, vol. 898. Rand, D.A., Young, L.S. (eds.). New York: Springer-Verlag, pp. 366–381Google Scholar
  50. Thatcher, R.W., John, E.R. (1977): Functional neuroscience: vol. I. Foundations of cognitive processes. Hillsdale, NJ: Erlbaum AssociatesGoogle Scholar
  51. Thatcher, R.W., McAlaster, R., Lester, M.L., Horst, R.L., Cantor, D.S. (1983): Hemispheric EEG asymmetries related to cognitive functioning in children. In: Cognitive processing in the right hemisphere. Perecuman, A. (ed.). New York: Academic Press Thatcher, R.W., Krause, P., Hrybyk, M. (1986): Corticocortical association fibers and EEG coherence: A two compartmental model. Electroenceph. Clin. NeurophysioL 64, 123143Google Scholar
  52. Thatcher, R.W., Walker, R.A., Giudice, S. (1987): Human cerebral hemispheres develop at different rates and ages. Science 236, 1110–1113CrossRefGoogle Scholar
  53. Thatcher, R.W., Walker, R.A., Gerson, I., Geisler, F.H. (1989): EEG discriminant analyses of mild head trauma. Electroenceph. Clin. Neurophysiol. 74, 94–106CrossRefGoogle Scholar
  54. Thatcher, R.W., Cantor, D.S., McAlaster, R., Geisler, F.H., Krause, P. (1990): Comprehensive prediction of outcome in head injured patients: Development of prognostic equations. Ann. NYAcad. Sci. (in press)Google Scholar
  55. Thompson, J., Stewart, H. (1986): Nonlinear dynamics and chaos. New York: John Wiley and SonsGoogle Scholar
  56. Wilder, C.S. (1976): Health Interview Survey. Rockville, MD: National Center for Health Statistics, Department of Health, Education and WelfareGoogle Scholar
  57. Wilson, H.R., Cowen, J.D. (1972): Excitatory and inhibitory interactions in localized populations of model neurons. J. Biophysics 12, 1–24CrossRefGoogle Scholar
  58. Wilson, H.R., Cowen, J.D. (1973): A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80CrossRefGoogle Scholar
  59. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A. (1985): Determining Lyapunov exponents from a time series. Physica 16D, 285–317Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robert W. Thatcher

There are no affiliations available

Personalised recommendations