Point and Line Singularities in Liquid Crystals

  • Robert M. Hardt
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)


A liquid crystal is generally understood to be a mesomorphic state of matter which flows like a liquid and which exhibits some anisotropic behavior. See [E], [EK], [C], [DG]. The liquid crystal phase usually lies between a solid phase and an isotropic liquid phase with phase transition being induced by temperature change. A static model typically involves a kinematic variable n(x), called the director, which is a unit vector defined for x in a spatial region Ω.


Liquid Crystal Nematic Liquid Crystal Line Singularity Partial Regularity Unique Continuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    F.J. Almgren, Q-valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension 2, preprint.Google Scholar
  2. [AL]
    F.J. Almgren, Jr. and E. Lieb, Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds, Ann. Math., 128 (1988) 483–530.MathSciNetCrossRefMATHGoogle Scholar
  3. [BCL]
    H. Brezis, J.-M. Coron, and E. Lieb, Harmonic maps with defects, Comm. Math. Physics 107 (1986), 649–705.MathSciNetCrossRefMATHGoogle Scholar
  4. [C]
    S. Chandrasekhar, Liquid Crystals, Cambridge U. Press, 1977.Google Scholar
  5. [CHKLL]
    R. Cohen, R. Hardt, D. Kinderlehrer, S.-Y. Lin, and M. Luskin, Minimum energy configurations for liquid crystals: computational results in Theory and applications of liquid crystals, IMA vol. 5, Springer, 1986, 99–122.Google Scholar
  6. [D]
    C. Dafermos, Disclinations in liquid crystals, Quart. J. Mech. Appl. Math. 23.2 (1970), 49–64.Google Scholar
  7. [DG]
    P.G. DeGennes, The Physics of Liquid Crystals, Clarendon Press, 1974.Google Scholar
  8. [E]
    J. Ericksen, Equilbrium theory of liquid crystals, Adv. in liquid crystals 2, (G.H. Brown, ed.), Academic Press (1976), 233–298.Google Scholar
  9. [EK]
    J. Ericksen and D. Kinderlehrer, ed., Theory and Applications of Liquid Crystals, IMA vol. 5, Springer, 1986.Google Scholar
  10. [FF]
    F. Frank, Liquid crystals, Discuss. Faraday Soc. 25 (1958), 19–28.CrossRefGoogle Scholar
  11. [FG]
    G. Freidel, Annals Phys. 9e serie, 18 (1922), 273–474.Google Scholar
  12. [GL]
    N. Garofalo and F.H. Lin, Monotonicity properties of variational integrals, A p -weights, and unique continuation, Ind. U. Math. J. 35 (1986), 245–268.Google Scholar
  13. [GW]
    R. Gulliver and B. White, The rate of convergence of a harmonic map at a singular point, Math. Annalen 283 (1989), 539–550.MathSciNetCrossRefMATHGoogle Scholar
  14. [H]
    F. Hélein, Minima de la fonctionnelle énergie libre des cristaux liquides, to appear in Comp. Rend. A.S.Google Scholar
  15. [HKL1]
    R. Hardt, D. Kinderlehrer, and F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Physics 105 (1986), 547–570.MathSciNetCrossRefMATHGoogle Scholar
  16. [HKL2]
    R. Hardt, D. Kinderlehrer, and F.H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincare, Anal. Nonlin. 5, no. 4 (1988), 297–322.MathSciNetMATHGoogle Scholar
  17. [HKW]
    S. Hildebrandt, H. Kaul, and K. Widman, An existence theory for harmonic mappings of Riemannian manifolds, Acta. Math. 138 (1977), 1–16.MathSciNetMATHGoogle Scholar
  18. [HL1]
    R. Hardt and F.H. Lin, A remark on H 1 mappings, Manuscripta Math. 56 (1986), 1–10.MathSciNetCrossRefMATHGoogle Scholar
  19. [HL2>]
    R. Hardt and F.H. Lin, Stability of singularities of minimizing harmonic maps, to appear in J. Diff. Geom.Google Scholar
  20. [HL3]
    R. Hardt and F.H. Lin, Line singularities in liquid crystals,in preparation.Google Scholar
  21. [L1]
    F.H. Lin, Une remarque sur l’application xl1x1, Comp. Rend. A.S. 305–1 (1987), 529–531.Google Scholar
  22. [L2]
    F.H. Lin, Nonlinear theory of defects in nematic liquid crystals—phase transition and flow phenomena, preprint.Google Scholar
  23. [M]
    M] J. Maddocks, A model for disclinations in nematic liquid crystals,IMA, vol. 5, Springer, 1986, 255–269.Google Scholar
  24. [RWB]
    C. Robinson, J.C. Ward, and R.B. Beevers, Discuss. Faraday Soc. 25 (1958), 29–42.CrossRefGoogle Scholar
  25. [S]
    L. Simon, Isolated singularities for extrema of geometric variational problems, Springer Lecture Notes 1161, 1985.Google Scholar
  26. [SU1]
    R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307–335.MathSciNetMATHGoogle Scholar
  27. [SU2]
    R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem of harmonic maps, J. Diff. Geom. 18 (1983), 253–268.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robert M. Hardt
    • 1
  1. 1.Mathematics DepartmentRice UniversityHoustonUSA

Personalised recommendations