Relative Category and The Calculus of Variations

  • G. Fournier
  • M. Willem
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)


Contrary to Morse theory, Lusternik-Schnirelman theory is not applicable to functions which are unbounded from below. In order to overcome this difficulty, a notion of relative category was introduced in [6]. Under some assumptions, the following estimate is true:
$$ \# \{ u \in {\varphi ^{ - 1}}([a,b]):\varphi \prime (u) = 0\} \geqslant ca{t_{{\varphi ^b},{\varphi ^a}}}({\varphi ^b}) $$
where \( {\varphi ^c} = {\varphi ^{ - 1}}(] - \infty ,c]). \)


Morse Theory Critical Point Theory Relative Category Distinct Solution Finsler Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.C. Chang, Infinite dimensional Morse theory and its applications, Séminaire de Mathématiques supérieures, Presses de l’Université de Montréal, Montréal, 1985.Google Scholar
  2. [2]
    K.C. Chang, On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Analysis, TMA 13 (1987), 527–537.Google Scholar
  3. [3]
    C. Conley and E. Zehnder, The Birkhoff—Lewis fixed point theorem and a conjecture of V. Arnold, Invent. Math. 73 (1983), 33–45.MathSciNetMATHGoogle Scholar
  4. [4]
    E. Fadell, Cohomological methods in non-free G-spaces with applications to general Borsuk—Ulam theorems and critical point theorems for invariant functionals, in Nonlinear functional analysis and its applications, D. Reidel, 1986, 1–45.Google Scholar
  5. [5]
    A. Fonda and J. Mawhin, Multiple periodic solutions of conservative systems with periodic nonlinearity, preprint.Google Scholar
  6. [6]
    G. Fournier and M. Willem, Multiple solutions of the forced double pendulum equation, Analyse Non Linéaire, Gauthier-Villars, Paris (1989), 259–281.Google Scholar
  7. [7]
    L. Lusternik and L. Schnirelman, Méthodes topologiques dans les problèmes variationnels, Hermann, Paris, 1934.MATHGoogle Scholar
  8. [8]
    J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.MATHGoogle Scholar
  9. [9]
    E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Fournier
    • 1
  • M. Willem
    • 2
  1. 1.Département de Math. InfoUniversité de SherbrookeSherbrooke, QuébecCanada
  2. 2.Dept. MathUniversité Cath. de LouvainLouvain-la-NeuveBelgium

Personalised recommendations