Relaxed Energies for Harmonic Maps

  • F. Bethuel
  • H. Brezis
  • J. M. Coron
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)


$$Omega \subset {\mathbb{R}^3}$$
be an open bounded set such that
$$ \partial \Omega $$
is smooth. Set
$$ {H^1}\left( {\Omega ;{S^2}} \right) = \left\{ {u \in {H^1}\left( {\Omega ;{\mathbb{R}^3}} \right);|u\left( x \right)| = 1 a.e.} \right\} $$
$$ H_\varphi ^1\left( {\Omega ;{S^2}} \right) = \left\{ {u \in {H^1}\left( {\Omega ;{S^2}} \right);u = \varphi on \partial \Omega } \right\}, $$
$$ \varphi :\partial \Omega \to {S^2} $$
is a given boundary data.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bel]
    F. Bethuel, A characterization of maps in H 1 (B 3, S 2 ) which can be approximated by smooth maps,to appear.Google Scholar
  2. [Be2]
    F. Bethuel, Approximation dans des espaces de Sobolev entre deux variétés et groupes d’homotopie,C.R. Acad. Sc. Paris 307 (1988),293–296, and The approximation problem for Sobolev maps between two manifolds,to appear.Google Scholar
  3. [BeZ]
    F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.MathSciNetCrossRefMATHGoogle Scholar
  4. [B1]
    H. Brezis, Liquid crystals and energy estimates for S 2 -valued maps, in Theory and Applications of Liquid Crystals, IMA Vol. 5 ( J.L. Ericksen and D. Kinderlehrer eds. ), Springer (1987).Google Scholar
  5. [B2]
    H. Brezis, Sk-valued maps with singularities, in Topics in the Calculus of Variations, (M. Giaquinta ed.).Lecture Notes in Math. 1365, Springer (1989), 1–30.Google Scholar
  6. [BC]
    H. Brezis and J.M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), 203–215.MathSciNetCrossRefMATHGoogle Scholar
  7. [BCL]
    H. Brezis, J.M. Coron, and E. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649–705.MathSciNetCrossRefMATHGoogle Scholar
  8. [HKL]
    R. Hardt, D. Kinderlehrer, and F.H. Lin, The variety of configurations of static liquid crystals, to appear.Google Scholar
  9. [HL]
    R. Hardt and F.H. Lin, A remark on H 1 mappings, Manuscripta Math. 56 (1986), 1–10.MathSciNetCrossRefMATHGoogle Scholar
  10. [KW]
    H. Karcher and J.C. Wood, Non-existence results and growth properties for harmonic maps and forms, J. Reine Angew. Math. 353 (1984), 165–180.MathSciNetMATHGoogle Scholar
  11. [SU1]
    R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1983), 307–335.MathSciNetGoogle Scholar
  12. [SU2]
    R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253–268.MathSciNetMATHGoogle Scholar
  13. [W]
    J.C. Wood, Non-existence of solutions to certain Dirichlet problems for harmonic maps, preprint Leeds Univ. (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • F. Bethuel
    • 1
  • H. Brezis
    • 2
    • 3
  • J. M. Coron
    • 4
  1. 1.CERMA, ENPCLa Courtine Noisy le GrandFrance
  2. 2.Département de MathématiquesUniversité P. et M. CurieParis Cedex 05France
  3. 3.Department of MathematicsRutgers University, Hill CenterNew BrunswickUSA
  4. 4.Département de MathématiquesUniversité Paris-SudOrsay CedexFrance

Personalised recommendations