Skip to main content

Modulation of Proprioceptive Information in Crustacea

  • Chapter
Book cover Neural Control of Locomotion

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 18))

Abstract

Several studies of locomotion and postural regulation in different Crustacea indicate that utilization of the sensory information in apparently simple proprioceptive reflexes is subject to considerable variability during both centrally and peripherally commanded changes in motor output. Proprioception in Crustacea is mediated primarily by sensory cells whose dendritic processes insert into connective tissue associated with joints between limb or body segments. These systems generally signal movement or position. In a few instances, the sensory structures are mechanically linked to specialized receptor muscles or to the muscles involved in locomotion and can thus serve to monitor muscle length or tension, as in vertebrates. Other mechanoreceptors signal deformation of the somewhat elastic exoskeleton or of the nerve cord sheath. Activation of these receptors may evoke reflex feedback to the segment of origin or may influence motor outputs in other segments. Consideration will be given to the roles that these receptors play in naturally occurring motor response and to interactions between centrally initiated motor activity and proprioceptive reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrowicz, J.S., (1951) Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris. Quart. J. Micr. Sci. 92, 163–199.

    Google Scholar 

  • Alexandrowicz, J.S. and Whitear, M., (1957) Receptor elements in the coxal region of decapod Crustacea. J. Mar. Biol. Assoc. U.K. 36, 603–628.

    Google Scholar 

  • Alexandrowicz, J.S., (1967) Receptor organs in thoracic and abdominal muscles of Crustacea. Biol. Rev. 42, 288–326.

    Google Scholar 

  • Angaut-Petit, D., Clarac, F. and Vedel, F.P., (1974) Excitatory and inhibitory innervation of a crustacean muscle associated with a sensory organ. Brain Res. 70, 148–152.

    Article  Google Scholar 

  • Atwood, H.L. and Wiersma, C.A.G., (1967) Command interneurons in the crayfish central nervous system. J. Exp. Biol. 46, 249–261.

    Google Scholar 

  • Barnes, W.J.P., Spirito, C.P. and Evoy, W.H., (1972) Nervous control of walking in the crab Cardisoma guanhumi. II. Role of resistance reflexes in walking. Z. vergl. Physiol. 76, 16–31.

    Google Scholar 

  • Barnes, W.J.P., (1975) “Nervous control of locomotion in Crustacea,” In Simple Nervous Systems. (Usherwood, P.N.R. and Newth, D.R., eds.), Arnolds, London, (415–441).

    Google Scholar 

  • Bowerman, R.F. and Larimer, J.L., (1974a) Command fibers in the circumoesophageal connectives of crayfish. I. Tonic fibers. J. Exp. Biol. 60, 95–117.

    Google Scholar 

  • Bowerman, R.F. and Larimer, J.L., (1974b) Command fibers in the circumoesophageal connectives of crayfish. II. Phasic fibers. J. Exp. Biol. 60, 119–134.

    Google Scholar 

  • Burrows, M. and Horridge, G.A., (1974) The organization of inputs to motoneurons of the locust metathoracic leg. Phil. Trans. R. Soc. London. B. 269, 49–94.

    Google Scholar 

  • Bush, B.M.H., (1962) Proprioceptive reflexes in the legs of Carcinus maenas (L.). J. Exp. Biol. 39, 89–106.

    Google Scholar 

  • Bush, B.M.H. and Roberts, A., (1968) Resistance reflexes from a crab muscle receptor. Nature. 218, 1171–1173.

    Article  Google Scholar 

  • Bush, B.M.H. and Clarac, F., (1975) Intersegmental reflex excitation of leg muscles and myochordotonal efferents in decapod Crustacea. J. Physiol. 246, 58P - 60 P.

    Google Scholar 

  • Clarac, F., Wales, W. and Laverack, M.S., (1971) Stress detection at the autotomy plane in the decapod Crustacea. II. The function of the receptors associated with the cuticle of the basi-ischiopodite. Z. vergl. Physiol. 73, 383–407.

    Google Scholar 

  • Clarac, F. and Vedel, J.P., (1971) Etude des relations fonctionelles entre le muscle flechisseur accessoire et les organes sensorielles chordotonaux des appendices locomoteurs de la langouste Palinurus vulgaris. Z. vergl. Physiol. 72, 386–410.

    Google Scholar 

  • Clarac, F. and Dando, M.R., (1973) Tension receptor reflexes in the walking legs of the crab Cancer pagurus. Nature. 243, 94–95.

    Article  Google Scholar 

  • Cohen, M.J., (1963) The crustacean myochordotonal organ as a proprioceptive system. Comp. Biochem. Physiol. 8, 223–243.

    Google Scholar 

  • Cohen, M.J., (1965) The dual role of sensory systems: Detection and setting central excitability. Cold Spring Hbr. Symp. Quant. Biol. 30, 587–599.

    Google Scholar 

  • Dando, M.R. and MacMillan, D.L., (1973) Tendon organs and tendon organ reflexes in decapod Crustacea. J. Physiol. 234, 52–53 P.

    Google Scholar 

  • Davis, W.J. and Ayers, J.L. Jr., (1972) Locomotion: Control by positive-feedback optokinetic responses. Science. 177, 183–185.

    Google Scholar 

  • Dorai Raj, B.S. and Cohen, M.J., (1964) Structural and functional correlations in crab muscle fibers. Naturwiss. 9, 224–225.

    Article  Google Scholar 

  • Eckert, B., (1959) Uber das Zusammenwirken des erregenden und des hemmenden Neurons des M. abductor der Krebsschere beim Ablauf von Reflexen des myotätischen Typus. Z. vergl. Physiol. 41, 500–526.

    Google Scholar 

  • Eckert, R.O., (1961a) Reflex relationships of the abdominal stretch receptors of a crayfish. I. Feedback inhibition of the receptors. J. Cell. Comp. Physiol. 57, 149–162.

    Google Scholar 

  • Eckert, R.O., (1961b) Reflex relationships of the abdominal stretch receptors of a crayfish. II. Stretch receptor involvement during the swimming reflex. J. Cell. Comp. Physiol. 57, 163–174.

    Google Scholar 

  • Evoy, W.H. and Cohen, M.J., (1969) Sensory and motor interaction in the locomotor reflexes of crabs. J. Exp. Biol. 51, 151–169.

    Google Scholar 

  • Evoy, W.H. and Cohen, M.J., (1971) “Central and peripheral control of arthropod movements,” In Advances in Comparative Physiology and Biochemistry. Vol. 4, (Lowenstein, 0., ed.), Academic Press, N.Y., (225–266).

    Google Scholar 

  • Field, L.H., (1974a) Sensory and reflex physiology underlying cheliped flexion behavior in hermit crabs. J. Comp. Physiol. 92, 397–414.

    Google Scholar 

  • Field, L.H., (1974b) Neuromuscular correlates of rhythmical cheliped flexion behavior in hermit crabs. J. Comp. Physiol. 92, 415–441.

    Google Scholar 

  • Fields, H.L. and Kennedy, D., (1965) Functional role of muscle receptor organs in crayfish. Nature. 206, 1235–1237.

    Article  Google Scholar 

  • Fields, H.L., (1966) Proprioceptive control of posture in the crayfish abdomen. J. Exp. Biol. 44, 455–458.

    Google Scholar 

  • Fields, H.L., Evoy, W.H. and Kennedy, D., (1967) Reflex role played by efferent control of an invertebrate stretch receptor. J. Neurophysiol. 30, 859–874.

    Google Scholar 

  • Florey, E. and Florey, E., (1955) Microanatomy of the abdominal stretch receptors of the crayfish (Astacus fluviatilis L.). J. Gen. Physiol. 39, 69–85.

    Google Scholar 

  • Fourtner, C.R. and Evoy, W.H., (1973) Nervous control of walking in the crab, Cardisoma guanhumi. IV. Effects of myochordotonal organ ablation. J. Comp. Physiol. 83, 319–329.

    Google Scholar 

  • Furshpan, E.J. and Potter, D.D., (1959) Slow post-synaptic potentials recorded from the giant motor fibre of the crayfish. J. Physiol. 145, 326–335.

    Google Scholar 

  • Grobstein, P., (1973a) Extension-sensitivity in the crayfish abdomen. I. Neurons monitoring nerve cord length. J. Comp. Physiol. 86, 331–348.

    Google Scholar 

  • Grobstein, P., (1973b) Extension-sensitivity in the crayfish abdomen. II. The tonic cord stretch reflex. J. Comp. Physiol. 86, 349–358.

    Google Scholar 

  • Horch, K., (1971) An organ for hearing and vibration sense in the ghost crab, Ocypode. Z. vergl. Physiol. 73, 1–21.

    Google Scholar 

  • Hoyle, G., (1964) “Exploration of neuronal mechanisms underlying behavior in insects,” In Neural Theory and Modelling. (Reiss, R.F., ed.), Stanford University Press, California, (346–376).

    Google Scholar 

  • Hoyle, G. and Burrows, M., (1973) Neural mechanisms underlying behaviour in the locust Schistocerca gregaria 1. Physiology of identified motoneurons in the metathoracic ganglion. J. Neurobiol. 4, 3–41.

    Google Scholar 

  • Hughes, G.M. and Wiersma, C.A.G., (1960) Neuronal pathways and synaptic connections in the abdominal cord of the crayfish. J. Exp. Biol. 37, 291–307.

    Google Scholar 

  • Ilyinsky, O.B., Spivachenko, D.L. and Shtirbu, E.I., (1974) Efferent regulation of the abdominal stretch receptors of the crayfish. J. Exp. Biol. 61, 781–798.

    Google Scholar 

  • Jansen, J.K.S., Nja, A., Ormstad, K. and Wallse, L., (1970a) IPSPs in the slowly adapting stretch receptor of the crayfish. Acta Physiol. Scand. 79, 14A - 15A.

    Google Scholar 

  • Jansen, J.K.S., Nja, A. and Wallse, L., (1970b) Inhibitory control of the abdominal stretch receptors of the crayfish. I. The existence of a double inhibitory feedback. Acta Physiol. Scand. 80, 420–425.

    Google Scholar 

  • Jansen, J.K.S., Nja, A. and Wallge, L., (1970c) Inhibitory control of the abdominal stretch receptors of the crayfish. II. Reflex input segmental distribution and output relations. Acta Physiol. Scand. 80, 443–449.

    Google Scholar 

  • Jansen, J.K.S., Nja, A., Ormstad, K. and Wallihe, L., (1971) Inhibitory control of the abdominal stretch receptors of the crayfish. III. The accessory reflex as a recurrent inhibitory feedback. Acta Physiol. Scand. 81, 472–483.

    Google Scholar 

  • Kennedy, D. and Takeda, K., (1965) Reflex control of abdominal muscles in the crayfish. I. The twitch system. J. Exp. Biol. 43, 211–227.

    Google Scholar 

  • Kennedy, D., Evoy, W.H. and Fields, H.L., (1966a) The unit basis of some crustacean reflexes. Symp. Soc. Exp. Biol. 20, 75–109.

    Google Scholar 

  • Kennedy, D., Evoy, W.H. and Hanawalt, J.T., (1966b) The release of coordinated behavior in crayfish by single central neurons. Science. 154, 917–919.

    Article  Google Scholar 

  • Kennedy, D., (1969) “The control of output by central neurons,” In The Interneuron. (Brazier, M.A.B., ed.), UCLA Forum in Medical Sciences No. 11. University of California Press, California, (21–36).

    Google Scholar 

  • Kennedy, D., Selverston, A.I. and Remler, M.P., (1969) An analysis of restricted neural networks. Science. 164, 1488–1496.

    Article  Google Scholar 

  • Kennedy, D., (1971) Crayfish Interneurons. Physiologist. 14, 5–30.

    Google Scholar 

  • Kennedy, D., Calabrese, R.L. and Wine, J.J., (1974) Presynaptic inhibition: Primary afferent depolarization in crayfish neurons. Science. 186, 451–454.

    Google Scholar 

  • Krasne, F.B., (1969) Excitation and habituation of the crayfish escape reflex: The depolarization response in lateral giant fibers of the isolated abdomen. J. Exp. Biol. 50, 29–46.

    Google Scholar 

  • Krasne, F.B. and Woodsmall, K.S., (1969) Waning of the crayfish escape response as a result of repeated stimulation. Anim. Behay. 17, 416–424.

    Google Scholar 

  • Krasne, F.B. and Bryan, J.S., (1973) Habituation: Regulation through presynaptic inhibition. Science. 182, 590–592.

    Google Scholar 

  • Kuffler, S., (1954) Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol. 17, 558–574.

    Google Scholar 

  • Kuffler, S. and Eyzaguirre, C., (1955) Synaptic inhibition in an isolated nerve cell. J. Gen. Physiol. 39, 155–184.

    Google Scholar 

  • Larimer, J.L., Eggleston, A.C., Masukawa, L.M. and Kennedy, D., (1971) The different connections and motor outputs of lateral and medial giant fibers in the crayfish. J. Exp. Biol. 54, 391–402.

    Google Scholar 

  • MacMillan, D.L. and Dando, M.R., (1972) Tension receptors on the apodemes of muscles in the walking legs of the crab, Cancer magister. Mar. Behay. Physiol. 1, 185–208.

    Google Scholar 

  • MacMillan, D.L., (1975) A physiological analysis of walking in the American lobster (Homarus americanus). Phil. Trans. R. Soc. B. 270, 1–59.

    Google Scholar 

  • McVean, A., (1974) The nervous control of autotomy in Carcinus maenas. M. Exp. Biol. 60, 423–436.

    Google Scholar 

  • Moffett, S., (1975) Motor patterns and structural interactions of basi-ischiopodite levator muscles in routine limb elevation and production of autotomy in the land crab, Cardisoma guanhumi. J. Comp. Physiol. 96A, 285–305.

    Google Scholar 

  • Moody, C.J., (1970) A proximally directed intersegmental reflex in a walking leg of the crayfish. Amer. Zool. 10, 501.

    Google Scholar 

  • Moody, C.J., (1972) Some aspects of the reflex organization of a crustacean limb. Ph.D. Dissertation, University of Miami.

    Google Scholar 

  • Nakajima, Y., Tisdale, A.D. and Henkart, M.P., (1973) Presynaptic inhibition at inhibitory nerve terminals. A new synapse in the crayfish stretch receptor. Proc. Nat. Acad. Sci. 70, 2462–2466.

    Google Scholar 

  • Page, C.H. and Sokolove, P.G., (1972) Crayfish muscle receptor organ: role in regulation of postural flexion. Science. 175, 647–650.

    Article  Google Scholar 

  • Parnas, I. and Atwood, H.L., (1966) Phasic and tonic neuromuscular systems in the abdominal extensor muscles of the crayfish and rock lobster. Comp. Biochem. Physiol. 18, 701–723.

    Google Scholar 

  • Rayner, M.D. and Wiersma, C.A.G., (1967) Mechanisms of the crayfish tail flick. Nature. 213, 1231–1233.

    Article  Google Scholar 

  • Ripley, S.H., Bush, B.M.H. and Roberts, A., (1968) Crab muscle receptor which responds without impulses. Nature. 218, 1170–1171.

    Article  Google Scholar 

  • Roberts, A. and Bush, B.M.H., (1971) Coxal muscle receptors in the crab: The receptor current and some properties of the receptor nerve fibers. J. Exp. Biol. 54, 515–524.

    Google Scholar 

  • Roye, D.B., (1972) Evoked activity in the nervous system of Callinectes sapidus following phasic excitation of the statocysts. Experientia. 28, 1307–1309.

    Article  Google Scholar 

  • Schrameck, J.E., (1970) Crayfish swimming: alternating motor output and giant fiber activity. Science. 169, 698–700.

    Article  Google Scholar 

  • Selverston, A.I. and Remler, M.P., (1972) Neural geometry and

    Google Scholar 

  • activation of crayfish fast flexor motoneurons. J. Neurophysiol. 35, 797–814.

    Google Scholar 

  • Sokolove, P.G., (1973) Crayfish stretch receptor and motor unit behavior during abdominal extensions. J. Comp. Physiol. 84, 251–266.

    Google Scholar 

  • Sokolove, P.G. and Tatton, W.G., (1975) Analysis of postural moto-neuron activity in crayfish abdomen. I. Coordination by premotor connections. J. Neurophysiol. 38, 313–331.

    Google Scholar 

  • Spirito, C.P., Evoy, W.H. and Barnes, W.J.P., (1972) Nervous control of walking in the crab, Cardisoma guanhumi. I. Characteristics of resistance reflexes. Z. vergl. Physiol. 76, 1–15.

    Google Scholar 

  • Tatton, W.G. and Sokolove, P.G., (1975) Analysis of postural motoneuron activity in crayfish abdomen. II. Coordination by excitatory and inhibitory connections between motoneurons. J. Neurophysiol. 38, 332–346.

    Google Scholar 

  • Treistman, S.N. and Remler, M.P., (1974) Antifacilitating and simple following responses in a single motoneuron. J. Neurobiol. 5, 581–584.

    Article  Google Scholar 

  • Wales, W., Clarac, F. and Laverack, M.S., (1971) Stress detection at the autotomy plane in decapod Crustacea. I. Comparative anatomy of the receptors of the basi-ischiopodite region. Z. vergl. Physiol. 73, 357–382.

    Google Scholar 

  • Wiersma, C.A.G., (1952) Neurons of arthropods. Cold Spring Hbr. Symp. Quant. Biol. 17, 155–163.

    Google Scholar 

  • Wiersma, C.A.G., (1961) “The neuromuscular system,” In The Physiology of Crustacea, Vol. II, (Waterman, T.H., ed.), Academic Press, New York, (191–240).

    Google Scholar 

  • Wiersma, C.A.G. and Ikeda, K., (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12, 509–525.

    Google Scholar 

  • Willows, A.O.D., (1967) Behavioral acts elicited by stimulation of single, identifiable brain cells. Science. 157, 570–574.

    Article  Google Scholar 

  • Wilson, A.H. and Sherman, R.G., (1975) Mapping of neuron somata in the thoracic nerve cord of the lobster using cobalt chloride. Comp. Biochem. Physiol. 50A, 47–50.

    Google Scholar 

  • Wilson, D.M., (1961) The central nervous control of flight in a locust. J. Exp. Biol. 38, 471–490.

    Google Scholar 

  • Wilson, D.M. and Gettrup, E., (1963) A stretch reflex controlling wingbeat frequency in grasshoppers. J. Exp. Biol. 40, 171–185.

    Google Scholar 

  • Wine, J.J. and Krasne, F.B., (1972) The organization of escape behavior in the crayfish. J. Exp. Biol. 56, 1–18.

    Google Scholar 

  • Wine, J.J., Krasne, F.B. and Chen, L., (1975) Habituation and inhibition of the crayfish giant fiber escape response. J. Exp. Biol. 62, 771–782.

    Google Scholar 

  • Zucker, R.S., Kennedy, D. and Selverston, A.I., (1971) Neuronal circuit mediating escape responses in crayfish. Science. 173, 645–650.

    Article  Google Scholar 

  • Zucker, R.S., (1972a) Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. J. Neurophysiol. 35, 599–620.

    Google Scholar 

  • Zucker, R.S., (1972b) Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J. Neurophysiol. 35, 621–637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evoy, W.H. (1976). Modulation of Proprioceptive Information in Crustacea. In: Herman, R.M., Grillner, S., Stein, P.S.G., Stuart, D.G. (eds) Neural Control of Locomotion. Advances in Behavioral Biology, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0964-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0964-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0966-7

  • Online ISBN: 978-1-4757-0964-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics