Lipoxins pp 39-49 | Cite as

Lipoxygenase Catalyzed Oxygenation of Hydroxy Fatty Acids to Lipoxins

  • Hartmut Kühn
  • Alan R. Brash
  • Rainer Wiesner
  • Lutz Alder


The pure lipoxygenases from rabbit reticulocytes and soybeans convert a variety of substrates (arachidonic acid, 15-HPETE, 15-HETE, 5-HETE, various DiHETE isomers) to trihydroxy eicosanoids containing a conjugated tetraene system (lipoxins). In general, the methyl esters are better substrates for lipoxin formation than are the free acids. Lipoxygenase inhibitors (5,8,11,l4-eicosatetraynoic acid, nordihydroguaiaretic acid) strongly inhibit the lipoxin formation. The complete stereochemistry of the lipoxin B formed from 15S-HETE methyl ester has been established by co-chromatography with authentic standards on various types of HPLC columns, by GC/MS analysis, by gas liquid chromatography of the ozonolysis fragments of the menthoxy carbonyl derivatives and 1H-NMR studies. The molar absorption coefficient of the conjugated tetraenes was measured as ∈ 301=53,000.

The lipoxins formed from 15-HETE and various DiHETE isomers are formed exclusively via the oxygenation pathway as shown by experiments under an 17O2 atmosphere and/or by anaerobic incubations. Our results indicate that lipoxins can be synthesized via lipoxygenase-catalyzed sequential oxygenation of polyenoic fatty acids and their hydro(pero)xy derivatives.


Methyl Ester Molar Absorption Coefficient Hydroxy Fatty Acid Nordihydroguaiaretic Acid Soybean Lipoxygenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuhn, H. Wiesner, R., Alder, L., Schewe, T. and Stender, H. FEBS Lett. 208, 148–152 (1986).CrossRefGoogle Scholar
  2. 2.
    Ktihn, H., Wiesner, R., Alder, L, Fitzsimmons, B.J., Rokach, J., and Brash, A.R. Eur. J. Biochem., in press (1987).Google Scholar
  3. 3.
    Serhan, C.N., Hamberg, M., and Samuelsson, B. Proc. Natl. Acad. Sci. USA 83, 1983–1987 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    Fitzsimmons, B.J., Adams, Evans, J.F., LeBlanc, Y., and Rokach, J. J. Biol Chem. 260, 13008–13012 (1985).Google Scholar
  5. 5.
    Schewe, T., Wiesner, R. and Rapoport, S.M. Meth. Enzymol. 71, 430–441 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    van Os, C.P.A., Rijke-Schilders, G.P.M., van Halbeek, H., Verhagen, J. and Vliegenthart, J.F.G. Biochim. Biophys. Acta 663, 177–193 (1981).CrossRefGoogle Scholar
  7. 7.
    Tappet, A.L., Boyer, P.D. and Lundberg, W.D. J. Biol. Chem. 199, 267–281 (1952).Google Scholar
  8. 8.
    Serhan, C.N., Hamberg, M., and Samuelsson, B. Proc. Natl. Acad. Sci. USA 81: 5335–5339 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    Kuhn, H., Wiesner, R., Stender, H., Schewe, T., Lankin, V.Z., Nekrassov, A. and Rapoport, S.M. FEBS Lett. 203: 247–252 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    Hammarstrom, S. Meth. Enzymol. 35: 326–334 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Hartmut Kühn
    • 1
  • Alan R. Brash
    • 1
  • Rainer Wiesner
    • 2
  • Lutz Alder
    • 3
  1. 1.Division of Clinical PharmacologyVanderbilt UniversityNashvilleUSA
  2. 2.Institute for BiochemistryHumboldt UniversityBerlinGerman Democratic Republic
  3. 3.Department of ChemistryHumboldt UniversityBerlinGerman Democratic Republic

Personalised recommendations