Kinins—II pp 313-323 | Cite as

Components of the Kallikrein-Kinin System in Urine

  • James W. Ryan
  • Narendra B. Oza
  • Larry C. Martin
  • Guillermo A. Pena
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


The excretion of kallikrein in urine varies, but the pathophysiologic implications are not clear. To help clarify the role of the urinary kallikrein-kinin system, we have begun to define components of the system as they occur in urine. To minimize artifacts which may arise through extensive purification procedures, we studied urinary protein concentrates prepared by ultrafiltration. The concentrates were separated by chromatography on Sephacryl. Urine contains abundant kininase activity, but in strongly inhibited forms. Kininase II is separable into at least two forms. Another major kininase can hydrolyze benzoyl-Pro-Phe-Arg and is inhibited by arginine but not by BPP9a or SQ 14,225. Its molecular weight is ~63,000. A third kininase, not inhibited by BPP9a, is excluded from Sephacryl. Human urine appears to contain only one kallikrein-like enzyme (MM 45,000). In addition, urine conta:ins a protein (MW ~80,000) which reacts with trypsin to release bradykinin and which inhibits the hydrolysis of Pro-Phe-Arg-[3H]anilide by urinary kallikrein. Thus, in addition to kallikrein and kinins, urine contains kininogen and at least three kininase enzymes. Urinary ultrafiltrate contains an inhibitory substance (~MW 400).


Angiotensin Converting Enzyme Plasma Kallikrein Fresh Urine Urinary Kallikrein Urinary Kallikrein Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaven, V.H., J.V. Pierce and J.J. Pisano, 1971. A sensitive isotopic procedure for the assay of esterase activity: Measurement of human urinary kallikrein, Clin. Chim. Acta 32: 67.Google Scholar
  2. Brandi, C.M.W., E.S. Prado, M.J. Prado and J.L. Prado, 1976. Kinin— converting aminopeptidase from human urine partial purification and properties. J. Biochem., 7: 335.Google Scholar
  3. Caldwell, P.R.B., B.C. Seegal, K.C. Hsu, M. Das and R.L. Soffer, 1976. Angiotensin–converting enzyme: Vascular endothelial localization. Science 191: 1050.Google Scholar
  4. Carone, F.A., T.N. Pullman, S. Oparil and S. Nakamura, 1976. Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule. Am. J. Physiol. 230: 1420.Google Scholar
  5. Chung, A., J.W. Ryan, G.A. Pena and N.B. Oza (this volume), A simple radioassay for human urinary kallikrein.Google Scholar
  6. Conroy, J.M,, H. Hoffman, E.S. Kirk, H.O. Hirzel, E.H. Sonnenblick and R.L. Soffer, 1976. Pulmonary angiotensin–converting enzyme, J. Biol. Chem. 251: 4828.Google Scholar
  7. Croxatto, H.R., J, Roblero, R. Albertini, J. Corthorn, M, San Martin and G. Procelli, The kallikrein– kinin system in renal hypertension, 1976. In: Chemistry and Biology of the Kallikrein–Kinin System in Health and Disease, Fogarty Int. Center Proc. No. 27, eds. J.J. Pisano and K.F. Austen (U.S. Government Printing Office, Washington, D.C. ) P. 389.Google Scholar
  8. Cushman, D.W. and H.S. Chung, 1971. Concentrations of angiotensin converting enzyme in tissues of the rat. Biochim. Biophys. Acta 250: 261.Google Scholar
  9. Das, M. and R.L. Soffer, 1975. Pulmonary angiotensin-converting enzyme. Structural and catalytic properties. J. Biol. Chem., 250: 6762.Google Scholar
  10. Elliott, A.H. and F.R. Nuzum, 1934. Urinary excretion of a depressor substance (kallikrein of Frey and Kraut) in arterial hypertension, Endocrinology 18: 462.CrossRefGoogle Scholar
  11. Erdos, E.G., D.M. Marinkovic, P.E. Ward and I.H. Mills, 1978, Characterization of urinary kininase. Fed. Proc., 37: 657.Google Scholar
  12. Erdos, E.G. and H.Y.T. Yang, Bradykinin, kallidin and kallikrein,1970. In: Handb. Exp. Pharmac., ed. E.G. Erdos ( Springer–Verlag, New York ) p. 289.Google Scholar
  13. Geller, R.G,, Urinary kallikrein excretion in normotensive and hypertensive rats, 1976. In: Chemistry and Biology of the Kallikrein–Kinin System in Health and Disease, Fogarty Int. Center Proc. No. 27, eds. J.J. Pisano and K.F. Austen (U.S. Government Printing Office, Washington, D.C. ) P. 379.Google Scholar
  14. Hial, V., H.R. Keiser and J.J. Pisano, 1976. Origin and content of methionyl–lysyl–bradykinin, lysyl–bradykinin and bradykinin in human urine. Biochem. Pharmac. 25: 2499.Google Scholar
  15. Keiser, H.R., R.G. Geller, H.S. Margolius and J.J. Pisano, 1976. Urinary kallikrein in hypertensive animal models. Fed. Proc., 35: 199.Google Scholar
  16. Margolius, H.S., R. Geller, J.J. Pisano and A. Sjoerdsma, 1971. Altered urinary kallikrein excretion in human hypertension. The Lancet 2: 1063.CrossRefGoogle Scholar
  17. Margolius, H.S., D. Horwitz, J.J. Pisano and H.R. Keiser, 1976.Google Scholar
  18. Relationships among urinary kallikrein, mineralocorticoids.and human hypertensive disease. Fed. Proc., 35: 203.Google Scholar
  19. McGiff, J.C. and A. Nasjletti, 1976. Kinins, renal function and blood pressure regulation. Fed. Proc. 35: 172.Google Scholar
  20. Mills, I.H., N.A.A. MacFarlane, P.E. Ward and L.F.O. Obika, 1976. The renal kallikrein–kinin system and the regulation of salt and water excretion. Fed. Proc., 35: 181.Google Scholar
  21. Nakahara, M., 1978. Subunits of human plasma kininase II aenerated by plasma kallikrein. Biochem. Pharmac., 27: 1651.Google Scholar
  22. Nasjletti, A., J. Colina-Chourin and J.C. McGiff, Effect of kininase inhibition on canine renal blood flow and sodium excretion. Acta Physiol. latinoam. 24: 587.Google Scholar
  23. Oza, N.B. and J.W. Ryan, 1978. A simple high-yield procedure for isolation of human urinary kallikreins. Biochem. J., 171: 285. Pisano, J.J,, K. Yates and J.V. Pierce, 1978. Kininogen in urine.Agents and Actions 8: 153.Google Scholar
  24. Ryan, J.W., A. Chung, C. Ammons and M.L. Carlton, 1977. A simple radioassay for angiotensin converting enzyme. Biochem. J. 167: 501.Google Scholar
  25. Ryan, J.W., A. Chung, L.C. Martin and U.S. Ryan, 1978b. New substrates for the radioassay of angiotensin converting enzyme of endothelial cells in culture. Tissue and Cell 10: 555.PubMedGoogle Scholar
  26. Ryan, J.W., L.C. Martin, A. Chung and G.A. Pena (this volume). Mammalian inhibitors of angiotensin converting enzyme (kininase II).Google Scholar
  27. Ryan, J.W., U.S. Ryan, D.R. Schultz, C. Whitaker, A. Chung and F. E. Dorer, 1975. Subcellular localization of pulmonary angiotensin converting enzyme (kininase II). Biochem, J. 146: 497.Google Scholar
  28. Sealey, J.E., S.A. Atlas, J.H. Laragh, N.B. Oza and J.W. Ryan, 1978. Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 275: 144.PubMedCrossRefGoogle Scholar
  29. Ward, P.E., E.G. Erdos, C.D. Gedney, R.M. Dowben and R.C. Reynolds, Isolation of membrane-bound renal enzymes that metabolize kinins and angiotensins. Biochem. J. 157: 643.Google Scholar
  30. Ward, P.E., C.D. Gedney, F.M. Dowben and E.G. Erdos, 197.5. Isolation of membrane-bound renal kallikrein and kininase. Biochem. J,, 151: 755.Google Scholar
  31. Vinci, J.M., J.R. Gill Jr., R.E. Bowden, J.J. Pisano, J.L. Izzo Jr., N. Radfar, A.A. Taylor, R.M. Zusman, P.C. Bartter and H.R. Keiser, 1978. The kallikrein-kinin system in Bartter’s syndrome and its response to prostaglandin synthetase inhibition. J. Clin. Invest. 61: 1671.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • James W. Ryan
    • 1
  • Narendra B. Oza
    • 1
  • Larry C. Martin
    • 1
  • Guillermo A. Pena
    • 1
  1. 1.Department of MedicineUniversity of Miami School MedicineMiamiUSA

Personalised recommendations