Advertisement

Kinins—II pp 245-260 | Cite as

The Primary Structure of Porcine Glandular Kallikreins

  • Harald Tschesche
  • Gerhard Mair
  • Gudrun Godec
  • Franz Fiedler
  • Werner Ehret
  • Christa Hirschauer
  • Marius Lemon
  • Hans Fritz
  • Gunther Schmidt-Kastner
  • Carl Kutzbach
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

The amino acid sequence of the A- and B-chains of porcine pancreatic kallikrein B is presented and compared to that of porcine trypsin. The overall homology between both enzymes is 37% identical residues in corresponding position and 51% chemically similar residues. Comparison of the sequences with the crystal structure of bovine trypsin reveals that the trypsin “autolysis loop” is enlarged in kallikrein by two residues but lacks the basic residue at the cleavage site. Substitutions at the calcium-binding site of trypsin which include Arg 70 for Glu 70 possibly interfere with ion binding. Insertions between trypsin residues 95 and 96 obviously form a new kallikrein “autolysis loop” containing the site of cleavage between the A- and B-chains. One carbohydrate moiety is attached to this surface loop at Asn 95, the second to Asn 239 at the same edge of the globular molecule. The residues at the surface of the substrate binding site are substituted to an extent of 85% while the residues forming contacts to the trypsin inhibitor (Kunitz) are highly preserved. Immunodiffusion studies as well as identity of the N-terminal sequences of pancreatic, submandibular and urinary kallikrein reveal the same genetic origin of the three glandular kallikreins.

Keywords

Cyanogen Bromide Bovine Trypsin Amino Acid Amide Pancreatic Secretory Trypsin Inhibitor Porcine Trypsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blow, D.M., J.J. Birktoft and B.S. Hartley, 1969. Role of a buried acid group in the mechanism of action of chymotryspin, Nature (London 221: 337.Google Scholar
  2. Bode, W. and P. Schwager, 1975. The single calcium-binding site of crystalline bovine ß-trypsin, FEBS letters 56: 139.Google Scholar
  3. Bode, W. and P. Schwager, 1975a. The refined crystal structure of bovine ß-trypsin at 1.8 A resolution, J. Mol. Biol. 98: 693.Google Scholar
  4. Flhlhammer, H., W. Bode and R. Huber, 1977. Crystal structure of bovine trypsínogen at 1.8 A resulution, J. Mol. Biol. 111: 415.Google Scholar
  5. Fiedler, F., C. Hirschauer and E. Werle, 1970. Anreicherung von Prakallikrein B aus Schweinepankreas und Eigenschaften verschieder Formen des Pankreaskallikreins, Hoppe-Seyler’s Z. Physiol. Chem. 351: 225.Google Scholar
  6. Fiedler, F., C. Hirschauer and E. Werle, 1975. Characterization of pig pancreatic kallikreins A and B, Hoppe-Seyler’s Z. Physiol. Chem. 356: 1879.Google Scholar
  7. Fiedler, F., 1976. Pig pancreatic kallikreins A and B, in: Methods in Enzymology 45: 289.Google Scholar
  8. Fiedler, F., W. Ehret, G. Godec, C. Hírschauer, C. Kutzbach, G. Schmidt-Kastner and H. Tschesche, 1977. The primary structure of pig pancreatic kallikrein B, in: Kininogenases-Kallikrein 4, eds. G. Haberland, J.W. Rohen and T. Suzuki (SchattauerStuttgart), p. 7.Google Scholar
  9. Fontana, A., C. Vita and C. Toniolo, 1973. Selective cleavage of the single tryptophanyl peptide bond in horse heart cytochrome C, FEBS letters 32: 139.Google Scholar
  10. Freer, S.T., J. Kraut, J.D. Robertus, H.T. Wright, and N.H. Xuong, 1970. Chymotrypsinogen: 2.5 A crystal structure, comparison with a-chymotrypsinogen, and implication for zymogen activation, Biochemistry 9: 1977.Google Scholar
  11. Fritz, H., F. Fiedler, T. Dietl, M. Warwas, E. Truscheít, H.J. Kolb, G. Mair and H. Tschesche, 1977. On the relationship between porcine pancreatic, submandibular, and urinary kallikrein, in: Kininogenases-Kallikrein 4, eds. G. Haberland, J.W. Rohen and T. Suzuki (Schattauer-Stuttgart), p. 15.Google Scholar
  12. Habermann, E., 1962. Trennung und Reinigung von Pankreaskallikrein, Hoppe-Seyler’s Z. Physiol. Chem. 328: 15.Google Scholar
  13. Hartley, B.S. and Shotton, D.M., 1971. Pancreatic elastase, in: The Enzymes, ed. P.D. Boyer (Academic Press-New York) p. 323.Google Scholar
  14. Hermodson, M.A., L.H. Ericsson, K. Titani, H. Neurath and K.A. Walsh, 1972. Application of sequenator analysis to the study of proteins, Biochemistry 11: 4493.Google Scholar
  15. Hermodson, M.A., L.H. Ericsson, H. Neurath and K.A. Walsh, 1973. Determination of the amino acid sequence of porcine trypsin by sequenator analysis, Biochemistry 12: 3146.Google Scholar
  16. Huber, R., D. Kukla, W. Steigemann, J. Deisenhofer and T.A. Jones, 1974. in: Proteinase Inhibitors - Bayer Symposium V, eds.Google Scholar
  17. H. Fritz, H. Tschesche, L.J. Green and E. Truscheit (Springer-Berlin), p. 497.Google Scholar
  18. Kossiakoff, A.A., J.L. Chambers, L.M. Kay and R.M. Stroud, 1977. Structure of bovine chymotrypsinogen at 1.9 A resolution, Biochemistry 16: 654.Google Scholar
  19. Kraut, H., E.K. Frey and E. Werle, 1930. Der Nachweis eines Kreislaufhormons in der Pankreasdruse, Hoppe-Seyler’s Z. Physiol. Chem. 189: 97.Google Scholar
  20. Kutzbach, C. and G. Schmidt-Kastner, 1972. Kallikrein from pig pancreas. Purification, separation of components A and B, and crystallization. Hoppe-Seyler’s Z. Physiol. Chem. 353: 1099.Google Scholar
  21. Lemon, M., B. Forg-Grey and H. Fritz, 1976. Isolation of porcine submaxillary kallikrein, in: Kinins-pharmacodynamics and biological roles, eds. F. Sicuteri, N. Back and G.L. Haberland (Plenum-New York) p. 209.Google Scholar
  22. Pisano, J.J., 1975, Chemistry and biology of the kallikrein-kinin system, in: Proteases in Biological Control, eds. E. Reich, D.B. Rifkin and E. Shaw (Cold Spring Harbor Laboratory - Cold Spring Harbor) p. 199.Google Scholar
  23. Smith, R.L. and E. Shaw, 1968. Pseudotrypsin, J. Biol. Chem. 244: 4704.Google Scholar
  24. Stroud, R.M., L.M. Kay and R.E. Dickerson, 1971. The crystal and molecular structure of DIP-inhibited bovine trypsin at 2.7 A resolution, Cold Spring Harbor Symposium Quant. Biol. 36: 125.Google Scholar
  25. Stroud, R.M., L.M. Kay and R.E. Dickerson, 1974. The structure of bovine trypsin: Electron density maps of the inhibited enzyme at 5 A and 2.5 A resolution, J. Mol. Biol. 83: 185.Google Scholar
  26. Tschesche, H. and E. Wachter, 1970. The structure of the porcine pancreatic secretory trypsin inhibitor I. A sequence determination by Edman degradation and mass spectral identification of the p-bromophenyl-thiohydantoins, Eur. J. Biochem. 16: 187.Google Scholar
  27. Tschesche, H. and T. Dietl, 1975. The amino acid sequence of isoinhibitor K from snails (Helix pomatia) Eur. J. Biochem. 58: 439.Google Scholar
  28. Tschesche, H., W. Ehret, G. Godec, C. Hirschauer, C. Kutzbah, G. Schmidt-Kastner and F. Fiedler, 1976. The primary structure of pig pancreatic kallikrein B, in: Kinins-pharmacodynamics and biological roles, eds. F. Sicuteri, N. Back and G.L. Haberland (Plenum-New York) p. 123.Google Scholar
  29. Tschesche, H., G. Mair, B. Forg-Brey and H. Fritz, 1976a. Isolation of urinary kallikrein, in: Kinins-pharmacodynamics and biological roles, eds. F. Sicuteri, N. Back and G.L. Haberland (Plenum New York) p. 119.Google Scholar
  30. Zuber, M. and E. Sache, 1974. Isolation and characterization of porcine pancreatic kallikrein, Biochemistry 13: 3098.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Harald Tschesche
    • 1
  • Gerhard Mair
    • 1
  • Gudrun Godec
    • 1
  • Franz Fiedler
    • 2
  • Werner Ehret
    • 2
  • Christa Hirschauer
    • 2
  • Marius Lemon
    • 2
  • Hans Fritz
    • 2
  • Gunther Schmidt-Kastner
    • 3
  • Carl Kutzbach
    • 3
  1. 1.Department of BiochemistryUniversity BielefeldBielefeld 1GFR
  2. 2.Department of Clinical Chemistry and Clinical BiochemistryUniversity MunishMunich 1GFR
  3. 3.Bayer AGWuppertal 1GFR

Personalised recommendations