Skip to main content

A Direct Correspondence between Spectroscopic Measurements and Electrochemical Data and Theories

A Linear Relationship up to 10 mol dm−3, Precise Madelung Constants from Spectral Shift Data, and Correlations with Thermodynamic Parameters

  • Chapter
Ionic Liquids

Abstract

Spectroscopic measurements of aqueous electrolyte solutions have been made for nearly 50 years, and electrochemical measurements for very much longer. Although some relationships between infrared measurements of vibrational bands and electrochemical data have at times been noted, no relationships have, to our knowledge, so far been reported for chargetransfer-to-solvent (CTTS) spectra. Further, all the previous relationships have not sought to interrelate the theoretical understanding of the nature of the transition with that of electrochemical measurements. In this chapter we report and discuss such a relationship, and show that an all-embracing account is now available, which extends from infinitely dilute, through saturated salt solutions, to, in principle, the anhydrous salts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Smith and M. C. R. Symons, Trans. Faraday Soc. 54, 338 (1958).

    Article  Google Scholar 

  2. J. Jortner, B. Raz, and G. Stein, Trans. Faraday Soc. 56, 1273 (1960).

    Article  Google Scholar 

  3. D. Myerstein and A. Treinin, J. Phys. Chem. 66, 446 (1962).

    Article  Google Scholar 

  4. R. Platzmann and J. Franck, Z. Phys. 138, 411 (1954).

    Article  ADS  Google Scholar 

  5. M. Smith and M. C. R. Symons, Trans. Faraday Soc. 54, 346 (1958).

    Article  Google Scholar 

  6. G. Stein and A. Treinin, Trans. Faraday Soc. 55, 1086, 1091 (1959).

    Article  Google Scholar 

  7. M. Smith and M. C. R. Symons, Discuss Faraday Soc. 24, 206 (1957).

    Article  Google Scholar 

  8. B. S. Gourary and F. J. Adrian, Solid State Phys. 10, 127 (1960).

    Article  Google Scholar 

  9. M. C. R. Symons and W. T. Doyle, Quart. Rev. 14, 62 (1960).

    Article  Google Scholar 

  10. M. J. Blandamer and M. F. Fox, Chern. Rev. 70, 59 (1970).

    Article  Google Scholar 

  11. M. Anbar and E. J. Hart, J. Phys. Chem. 69, 1244 (1965).

    Article  Google Scholar 

  12. W. Gottschall and E. J. Hart, J. Phys. Chem. 71, 2102 (1967).

    Article  Google Scholar 

  13. M. C. R. Symons, Chem. Soc. Rev. 5, 337 (1976).

    Article  Google Scholar 

  14. C. K. Jorgensen, Solid State Phys. 13, 375 (1962).

    Article  Google Scholar 

  15. C. K. Jorgensen, Adv. Chem. Phys. 5, 33 (1963).

    Google Scholar 

  16. C. K. Jorgensen, Orbitals in Atoms and Molecules, Academic, London (1962).

    Google Scholar 

  17. C. K. Jorgensen, International Review of Halogen Chemistry, Vol. 1, Academic, London (1967).

    Google Scholar 

  18. D. B. Siano and D. E. Metzler, J. Chem. Soc. Faraday Trans. 2 68, 2042 (1972).

    Article  Google Scholar 

  19. G. Stein and A. Treinin, Trans. Faraday Soc. 56, 1393 (1960).

    Article  Google Scholar 

  20. H. E. Wirth, J. Am. Chem. Soc. 39, 2549 (1937).

    Google Scholar 

  21. H. E. Wirth, J. Am. Chem. Soc. 42, 1128 (1940).

    Google Scholar 

  22. H. E. Wirth and H. E. Collier, J. Am. Chem. Soc. 72, 5292 (1950).

    Article  Google Scholar 

  23. M. J. Blandamer, T. R. Griffiths, and K. J. Wood, J. Cheni. Soc. Chem. Commun. 933, (1969).

    Google Scholar 

  24. P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).

    MATH  Google Scholar 

  25. J. C. Ghosh, J. Chem. Soc. 113, 449 (1918).

    Article  Google Scholar 

  26. L. W. Bahe, J. Phys. Chem. 76, 1062, 1608 (1972).

    Google Scholar 

  27. I. Ruff, J. Chem. Soc. Faraday Trans. 1 73, 1858 (1977).

    Google Scholar 

  28. M. H. Lietzke, R. W. Stoughton, and R. M. Fuoss, Proc. Natl. Acad. Sci. USA 59, 39, (1968).

    Article  ADS  Google Scholar 

  29. R. M. Fuoss and L. Onsager, Proc. Natl. Acad. Sci. USA 47, 818 (1961).

    Article  ADS  Google Scholar 

  30. N. Bjerrum, Z. Elektrochem. 24, 321 (1918).

    Google Scholar 

  31. N. Bjerrum, Z. Anorg. Chem. 109, 275 (1920).

    Google Scholar 

  32. H. S. Frank and P. T. Thompson, in The Structure of Electrolytic Solutions, Ed. W. J. Hamer, Wiley, New York (1959), pp. 113–134.

    Google Scholar 

  33. E. Glueckauf, in The Structure of Electrolytic Solutions, Ed. W. J. Hamer, Wiley, New York (1959), Part 7, pp. 97–112.

    Google Scholar 

  34. G. W. Murphy and E. W. Smith, J. Chem. Phys. 31, 1086 (1959).

    Article  Google Scholar 

  35. M. A. Devanathan, J. Sci. Ind. Res. India B 20, 256 (1961).

    Google Scholar 

  36. P. Mitra, D. V. S. Jain, and M. H. Kapoor, Indian J. Chem. 6, 391 (1968).

    Google Scholar 

  37. E. Glueckauf, Trans. Faraday Soc. 51, 1235 (1955).

    Article  Google Scholar 

  38. C. A. Angell, J. Phys. Chem. 70, 3988 (1966).

    Article  Google Scholar 

  39. C. A. Angell, E. J. Sare, and R. D. Bressel, J. Phys. Chem. 71, 2759 (1967).

    Article  Google Scholar 

  40. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959), p. 491.

    Google Scholar 

  41. K. J. Wood, Ph.D. thesis, Leeds University (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffiths, T.R., Wijayanayake, R.H. (1981). A Direct Correspondence between Spectroscopic Measurements and Electrochemical Data and Theories. In: Inman, D., Lovering, D.G. (eds) Ionic Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0920-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0920-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0922-3

  • Online ISBN: 978-1-4757-0920-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics