Skip to main content

Nonvibrational Nondiffusional Modes of Motion in Hydrated Calcium Nitrate Melts

  • Chapter
Book cover Ionic Liquids

Abstract

Interest in highly concentrated aqueous solutions, in which all or most of the water is directly bound to ions, is relatively recent and has focused to a large extent on hydration coordination numbers and the extent to which cation-bound hydration water molecules are replaced by anions. For example, infrared and Raman spectroscopy of nitrate vibrations in nitrate melts1,2 have provided evidence that the nitrate ion competes effectively with water for the first coordination shell of Ca2+ in Ca(NO3)2 3 solutions and their mixtures with KNO3.4 From the relative intensities of vibrational absorptions due to cation-perturbed and -unperturbed anion normal modes, equilibrium constants can be estimated for water-anion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Verrat, in Water: A Comprehensive Treatise, Vol. 3, Ed. F. Franks, Plenum Press, New York (1973), Chap. 5, p. 211.

    Google Scholar 

  2. T. H. Lilley, in Water: A Comprehensive Treatise, Vol. 3, Ed. F. Franks, Plenum Press, New Yórk (1973), Chap. 6, p. 265.

    Google Scholar 

  3. R. E. Hester and R. A. Plane, J. Chem. Phys. 40, 411 (1960).

    Article  ADS  Google Scholar 

  4. C. T. Moynihan and A. Fratiello, J. Am. Chem. Soc. 89, 5546 (1967).

    Article  Google Scholar 

  5. R. Pottel, in Water: A Comprehensive Treatise,Vol. 3, Ed. F. Franks, Plenum Press, New York (1973), Chap. 8, p. 401 and references given therein.

    Google Scholar 

  6. K. Giese, Ber. Bunsenges. Phys. Chem. 76, 495 (1972).

    Google Scholar 

  7. R. G. Wawro and T. J. Swift, J. Am. Chem. Soc. 90, 2792 (1968).

    Article  Google Scholar 

  8. N. A. Matwiyoff and H. Taube, J. Am. Chem. Soc. 90, 2796 (1968).

    Article  Google Scholar 

  9. A. Fratiello, V. Kubo, S. Peak, B. Sanchez, and R. E. Schuster, Inorg. Chem. 10, 2552 (1971).

    Article  Google Scholar 

  10. R. D. Green and N. Sheppard, J. Chem. Soc. Faraday Trans. 2, 68, 821 (1972).

    Article  Google Scholar 

  11. H. G. Hertz, in Water: A Comprehensive Treatise,Vol. 3, Ed. F. Franks, Plenum Press, New York (1973), Chap. 7, p. 301 and references given therein.

    Google Scholar 

  12. G. S. Darbari and S. Petrucci, J. Phys. Chem. 73, 921 (1969).

    Article  Google Scholar 

  13. G. S. Darbari, M. R. Richelson, and S. Petrucci, J. Chem. Phys. 53, 859 (1970).

    Article  ADS  Google Scholar 

  14. K. Tamura, J. Phys. Chem. 81, 820 (1977).

    Article  Google Scholar 

  15. C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).

    Article  ADS  Google Scholar 

  16. A. Fratiello, V. Kubo, R. E. Lee, and R. E. Schuster, J. Phys. Chem. 74, 3726 (1970) and references contained therein.

    Google Scholar 

  17. I. M. Hodge and C. A. Angell, J. Phys. Chem. 82, 1761 (1978).

    Article  Google Scholar 

  18. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Wiley, New York (1967).

    Google Scholar 

  19. J. G. Berberian and R. H. Cole, Rev. Sci. Instrum. 40, 811 (1969).

    Article  ADS  Google Scholar 

  20. G. P. Johari and M. Goldstein, J. Chem. Phys. 2372 (1970).

    Google Scholar 

  21. I. M. Hodge, unpublished results.

    Google Scholar 

  22. L. Hayler and M. Goldstein, J. Chem. Phys. 66, 4736 (1977).

    Article  ADS  Google Scholar 

  23. M. Eigen and G. Moass, Z. Phys. Chem. (Leipzig) 49, 163 (1966).

    Article  Google Scholar 

  24. C. A. Angell, A. Barkatt, C. T. Moynihan, and H. Sasabe, Proceedings of the International Conference on Molten Salts, Ed. J. P. Pemsler, Electrochemical Society, New York (1976), p. 195. C. A. Angell and A. Barkatt, J. Phys. Chem. 82, 1972 (1978).

    Google Scholar 

  25. J. E. Enderby and G. W. Neilson, in Water. A Comprehensive Treatise,Vol. 6, Ed. F. Franks, Plenum Press, New York (1978) and references contained therein.

    Google Scholar 

  26. C. Girard, J. Braunstein, A. L. Bacarella, B. M. Benjamin, and L. L. Brown, J. Chem. Phys. 67, 1555 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hodge, I.M., Angell, C.A. (1981). Nonvibrational Nondiffusional Modes of Motion in Hydrated Calcium Nitrate Melts. In: Inman, D., Lovering, D.G. (eds) Ionic Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0920-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0920-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0922-3

  • Online ISBN: 978-1-4757-0920-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics