Advertisement

Ionic Liquids pp 145-164 | Cite as

Molten Salts and Electrolyte Solutions

Some Aspects of Their Transport Properties with Respect to a Common Theory of Liquids
  • Joachim Richter

Abstract

In 1957 Fuoss and Onsager wrote the following in a fundamental paper about the conductance of unassociated electrolytes:

The problem of concentrated solutions cannot, in our opinion, be solved by any extension of the present theory (of liquids), which is based on a smoothed ionic distribution. The approach must start by an adequate theory for fused salts, which must then be followed by the theoretical treatment of the effect on the radial distribution function of adding uncharged (solvent) molecules.

Keywords

Ionic Liquid Friction Coefficient Activity Coefficient Electrolyte Solution Molten Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Fuoss and L. Onsager, J. Phys. Chem. 61, 668 (1957).CrossRefGoogle Scholar
  2. 2.
    A. Klemm, “Transport Properties of Molten Salts,” in Molten Salt Chemistry. Ed. M. Blander, Interscience, New York (1964).Google Scholar
  3. 3.
    B. R. Sundheim, “Transport Properties of Liquid Electrolytes,” in Fused Salts, Ed. B. R. Sundheim, McGraw-Hill, New York (1964).Google Scholar
  4. 4.
    G. J. Janz and R. D. Reeves, “ Molten Salt Electrolytes-Transport Properties,” in Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, Ed. Ch. W. Tobias, Interscience, New York (1967).Google Scholar
  5. 5.
    G. J. Janz, Molten Salts Handbook, Academic, New York (1967).Google Scholar
  6. 6.
    J. W. Tomlinson. “Transport Properties of Molten Salts,” Rev. Pure Appl. Chem. 18, 187 (1968).Google Scholar
  7. 7.
    C. T. Moynihan, “Mass Transport in Fused Salts,” in Ionic Interactions, Vol. I, Ed. S. Petrucci, Academic, New York (1971).Google Scholar
  8. 8.
    J. L. Copeland, Transport Properties of Ionic Liquids, Gordon and Breach, New York (1974).Google Scholar
  9. 9.
    H. Bloom and I. K. Snook, “Models for Molten Salts,” in Modern Aspects of Electrochemistry, Vol. 9, Eds. B. E. Conway and J. O’M. Bockris, Plenum, New York (1974).Google Scholar
  10. 10.
    J. Richter, Electrochim. Acta 22, 1035 (1977).CrossRefGoogle Scholar
  11. 11.
    J. Newman, “Transport Processes in Electrolytic Solutions,” in Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, Ed. Ch. W. Tobias, Interscience, New York (1967).Google Scholar
  12. 12.
    H. Falkenhagen, W. Ebeling, and W. D. Kraeft, “Mass Transport Properties of Ionized Dilute Electrolytes,” in Ionic Interactions, Vol. I, Ed. S. Petrucci, Academic, New York (1971).Google Scholar
  13. 13.
    D. G. Miller, Faraday Discuss. Chem. Soc. 64, 295 (1977).CrossRefGoogle Scholar
  14. 14.
    J. Braunstein, “Statistical Thermodynamics of Molten Salts and Concentrated Aqueous Electrolytes,” in Ionic Interactions, Vol. I, Ed. S. Petrucci, Academic, New York (1971).Google Scholar
  15. 15.
    J. Braunstein, Inorg. Chim. Acta Rev. 2, 19 (1968).Google Scholar
  16. 16.
    H. Falkenhagen, Theorie der Elektrolyte, Hirzel, Leipzig (1971).Google Scholar
  17. 17.
    R. Haase, Angew. Chem. 77, 517 (1965).CrossRefGoogle Scholar
  18. 18.
    C. A. Angell, J. Phys. Chem. 68, 218, 1917 (1964); 69, 2137 (1965); 70, 2793 (1966); 81, 232, 238 (1977).Google Scholar
  19. 19.
    J. Braunstein, J. Phys. Chem. 71, 3402 (1967).CrossRefGoogle Scholar
  20. 20.
    L. V. Woodcock, “ Molecular Dynamics Calculations on Molten Ionic Salts,” in Advances in Molten Salt Chemistry, Vol. 3, Eds. J. Braunstein, G. Mamantov, and G. P. Smith, Plenum, New York (1975).Google Scholar
  21. 21.
    R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading, Massachusetts (1969).Google Scholar
  22. 22.
    J. Richter and S. Sehm, Z. Naturforsch. 27a, 141 (1972).ADSGoogle Scholar
  23. 23.
    D. A. Maclnnes and A. S. Brown, Chem. Rev. 18, 335 (1936).CrossRefGoogle Scholar
  24. 24.
    H. Pelzer, Thesis, RWTH Aachen, 1961.Google Scholar
  25. 25.
    G. J. Janz, U. Krebs, H. F. Siegenthaler, and R. P. T. Tomkins, J. Phys. Chem. Ref Data 1 (3), 581–746 (1972). (Molten Salts, Vol. 3, Nitrates, Nitrites, and Mixtures).Google Scholar
  26. 26.
    I. D. McKenzie and R. M. Fuoss, J. Phys. Chem. 73, 1501 (1969).CrossRefGoogle Scholar
  27. 27.
    A. N. Campell and K. P. Singh, Can. J. Chem. 37, 1959 (1959).CrossRefGoogle Scholar
  28. 28.
    A. N. Campell and R. J. Friesen, Can. J. Chem. 37, 1288 (1959).CrossRefGoogle Scholar
  29. 29.
    T. Shedlovsky, J. Am. Chem. Soc. 54, 1411 (1932).Google Scholar
  30. 30.
    G. D. Parfitt and A. L. Smith, Trans. Faraday Soc. 59, 257 (1963).CrossRefGoogle Scholar
  31. 31.
    C. H. Orr and H. E. Wirth, J. Phys. Chem. 63, 1147 (1959).CrossRefGoogle Scholar
  32. 32.
    A. N. Campell and E. M. Kartzmark, Can. J. Chem. 28B, 43 (1950).Google Scholar
  33. 33.
    J. Richter and E. Amkreutz, Z. Naturforsch. 27a, 280 (1972).ADSGoogle Scholar
  34. 34.
    R. Haase, G. Lehnert, and H. J. Jansen, Z. Phys. Chem. (Frankfurt am Main) 42, 32 (1964).CrossRefGoogle Scholar
  35. 35.
    D. A. Maclnnes and I. A. Cowperthwaite, Chem. Rev. 11, 210 (1932).Google Scholar
  36. 36.
    H. Strehlow and H.-M. Kroetz, Z. Electrochem. Ber. Bunsenges. Physik. Chem. 62, 373 (1958).Google Scholar
  37. 37.
    N. Roessler and H. Schneider, Ber. Bunsenges. Phys. Cheni. 74, 1225 (1970).Google Scholar
  38. 38.
    D. Andréasson, A. Behn, and C.-A. Sjöblom, Z. Naturforsch. 25a, 700 (1970).ADSGoogle Scholar
  39. 39.
    J. Richter, J. Chem. Eng. Data 18, 400 (1973); Z. Naturforsch. 28a, 492 (1973).ADSGoogle Scholar
  40. 40.
    J. G. Albright and D. G. Miller, J. Phys. Chem. 76, 1853 (1972).CrossRefGoogle Scholar
  41. 41.
    D. G. Miller and M. J. Pikal, J. Solution Chem. 1,111 (1972).Google Scholar
  42. 42. L. Onsager, Phys. Rec.37, 405 (1931); 38, 2265 (1931); Ann. _N.Y. Acad. Sci.46 241 (1945).Google Scholar
  43. 43.
    R. Haase and J. Richter, Z. Naturforsch 22a, 1761 (1967).ADSGoogle Scholar
  44. 44.
    A. Klemm, Z. Naturforsch. 8a, 397 (1953); 17a, 805 (1962).Google Scholar
  45. 45.
    J. Richter, Ber. Bunsenges. Physik. Chem. 78, 972 (1974).Google Scholar
  46. 46.
    R. W. Laity, J. Chem. Phys. 30, 682 (1959).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Joachim Richter
    • 1
  1. 1.RWTH AachenAachenFederal Republic of Germany

Personalised recommendations