Axions and Dilatons: The Search for Very Light Scalar Particles

  • W. Buchmüller
Part of the Ettore Majorana International Science Series book series (EMISS, volume 50)


Axions, dilatons and other very light scalar particles are possible low energy manifestations of new interactions beyond the Standard Model. We discuss the connection between axion (a) and dilaton (σ) in supersymmetric theories and derive a prediction for their mass ratio, .We also review three recent proposals to search for light scalar particles in Bragg scattering, in a laser experiment and via the Mößbauer effect.


Mass Scale Laser Experiment Cosmological Constant Problem Bragg Scattering Dilaton Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Langacker, in Proc. of the XXIV Int. Conf. on High Energy Physics, eds. R. Kotthaus and J.H. Kühn (Munich, 1988 ) p. 190Google Scholar
  2. [2]
    W. Buchmüller and D. Wyler, Nucl. Phys. B268 (1986) 621ADSCrossRefGoogle Scholar
  3. [3]
    For a review, see J.E. Kim, Phys. Rep. 150 (1987) 1Google Scholar
  4. [4]
    R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38 (1977) 1440;Google Scholar
  5. S. Weinberg, Phys. Rev. Lett. 40 (1978) 223;ADSCrossRefGoogle Scholar
  6. F. Wilczek, Phys. Rev. Lett. 40 (1978) 279ADSCrossRefGoogle Scholar
  7. [5]
    P. Jordan, Z. Phys. 157 (1959) 112;ADSCrossRefGoogle Scholar
  8. C. Brans and R.H. Dicke, Phys. Rev. 124 (1961) 925MathSciNetADSMATHCrossRefGoogle Scholar
  9. [6]
    G. Mack, Nucl. Phys. B5 (1968) 499;Google Scholar
  10. P.G.O. Freund and Y. Nambu, Phys. Rev. 174 (1968) 1741Google Scholar
  11. [7]
    R.D. Peccei, J. Solà and C. Wetterich, Phys. Lett. B 195 (1987) 183ADSCrossRefGoogle Scholar
  12. [8]
    W. Buchmüller and N. Dragon, Phys. Lett. B 195 (1987) 417ADSCrossRefGoogle Scholar
  13. [9]
    C. Wetterich, Nucl. Phys. B302 (1988) 668ADSCrossRefGoogle Scholar
  14. [10]
    S. Weinberg, Rev. Mod. Phys. 61 (1989) 1MathSciNetADSMATHCrossRefGoogle Scholar
  15. [11]
    G.D. Coughlan, I. Kani, G.G. Ross and G. Segrè, Nucl. Phys. B316 (1989) 469ADSCrossRefGoogle Scholar
  16. [12]
    W. Buchmüller and N. Dragon, Nucl. Phys. B321 (1989) 207ADSCrossRefGoogle Scholar
  17. [13]
    E.T. Tomboulis, preprint UCLA/88/TEP/42 (1988)Google Scholar
  18. [14]
    For a review, see S. Coleman, Aspects of Symmetry (Cambridge University Press, 1985 ) p. 67Google Scholar
  19. [15]
    S.L. Adler, J.C. Collins and A. Duncan, Phys. Rev. D15 (1977) 1712;Google Scholar
  20. J.C. Collins, A. Duncan and S.D. Joglekar, Phys. Rev. D16 (1977) 438ADSCrossRefGoogle Scholar
  21. [16]
    J. Wess and B. Zumino, Phys. Lett. B37 (1971) 95MathSciNetCrossRefGoogle Scholar
  22. [17]
    H.P. Nilles, in Proc. of the 9th Johns Hopkins Workshop, Florence, 1985;Google Scholar
  23. J.P. Derendinger, L.E. Ibanez and H.P. Nilles, Nucl. Phys. B267 (1986) 365ADSCrossRefGoogle Scholar
  24. [18]
    K. Kobayashi and T. Uematsu, Nucl. Phys. B263 (1986) 309MathSciNetADSCrossRefGoogle Scholar
  25. [19]
    H.P. Nilles, Phys. Rep. 110 (1984) 1ADSCrossRefGoogle Scholar
  26. [20]
    For a review, see 0. Piguet and K. Sibold, Renormalized Supersymmetry, Birkhäuser Inc. (Boston 1986 )Google Scholar
  27. [21]
    Piguet and K. Sibold, Int. J. Mod. Phys. A (1986) 913;Google Scholar
  28. M.T. Grisaru and P.C. West, Nucl. Phys. B254 (1985) 249;MathSciNetADSCrossRefGoogle Scholar
  29. M.A. Shifman and A.I. Vainshtein, Nucl. Phys. B277 (1986) 456ADSCrossRefGoogle Scholar
  30. [22]
    S. Samuel and J. Wess, Nucl. Phys. B233 (1984) 488MathSciNetADSCrossRefGoogle Scholar
  31. [23]
    W.A. Bardeen, R.D. Peccei and T. Yanagida, Nucl. Phys. B279 (1987) 401ADSCrossRefGoogle Scholar
  32. [24]
    W. Buchmüller and F. Hoogeveen, Hannover preprint ITP-UH 9 /89 (1989)Google Scholar
  33. [25]
    P. Sikivie, Phys. Rev. Lett. 51 (1983) 1415;ADSCrossRefGoogle Scholar
  34. P. Sikivie, Phys. Rev. Lett. 52 (1984) 695 (E);Google Scholar
  35. P. Sikivie, Phys. Rev. D32 (1985) 1988Google Scholar
  36. [26]
    See, for instance, B.E. Warren, X-Ray Diffraction, Addison- Wesley Comp. ( Reading, 1969 )Google Scholar
  37. [27]
    G. Materlik, private communicationGoogle Scholar
  38. [28]
    K. van Bibber et al., Phys. Rev. Lett. 59 (1987) 759ADSCrossRefGoogle Scholar
  39. [29]
    L. Maiani, R. Petronzio and G. Zavattini, Phys. Lett. B 175 (1986) 359ADSCrossRefGoogle Scholar
  40. [30]
    A. C. Melissinos, private communicationGoogle Scholar
  41. [31]
    A. de Rujula and K. Zioutas, Phys. Lett. B217 (1989) 354Google Scholar
  42. [32]
    T.W. Donnelly et al., Phys. Rev. D18 (1987) 1607Google Scholar
  43. [33]
    M. Yoshimura, in Proc. of the XXIII Int. Conf. on High Energy Physics, Berkeley, ed. S.C. Loken (1986) p. 189;Google Scholar
  44. G.G. Raffelt, in Proc. of the XIV Int. Conf. on High Energy Physics, Munich, eds. R. Kotthaus and J.H. Kühn (1988) p. 1519Google Scholar
  45. [34]
    G.G. Raffelt, private communication; G.G. Raffelt and D.S.P. Dearborn, Phys. Rev. D36 (1987) 2211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • W. Buchmüller
    • 1
    • 2
  1. 1.Institut für Theoretische PhysikUniversität HannoverGermany
  2. 2.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations