Ruling Out the Light Higgs Boson by Kaon Decay

  • Hoi-Lai Yu
Part of the Ettore Majorana International Science Series book series (EMISS, volume 50)


We re-examine the theoretical estimates of the decay K → πH and the experimental constraints on the existence of a light Higgs boson from this process. We find that: (i) pole diagrams generated from the Higgs-gluon coupling via a loop of heavy quarks do contribute to K → πH, (ii) there is an additional contribution to the K → πH amplitude coming from the effective KHW and πHW couplings, (iii) even if B, the unknown parameter in the chiral-Lagrangian description of K → πH transitions, is nonzero and even if the real part of the K → πH amplitude is canceled accidentally, the imaginary contribution alone suffices to rule out a Higgs boson lighter than 2m π, and (iv) whether Higgs bosons in the mass range 2m π < m H < 350 MeV are excluded by the imaginary part of the K → πH amplitude depends on the branching ratio of H → µ + µ -,a+p, and the top-quark mass. Decay modes K L → π+π- H and K + → l+ vH are briefly discussed.


Higgs Boson Heavy Quark Decay Mode Pole Contribution Pole Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Linde, JETP Lett. 23 (1976) 73; S. Weinberg, Phys. Rev. Lett. 3G (1976) 294.Google Scholar
  2. 2.
    ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B192 (1987) 245;CLEO Collaboration, M. Artuso et al. CLNS-89/889(1988).Google Scholar
  3. UA1 Collaboration, C. Albajar et al., Phys. Lett. B186 (1986) 247.Google Scholar
  4. 4.
    R.S. Willey and H.L. Yú, Phys. Rev. D26 (1982) 3086.ADSGoogle Scholar
  5. CLEO Collaboration, P. Avery et al., Phys. Lett. B183 (1987) 429; Mark J Collaboration, B. Adeva et al., Phys. Rev. Lett. 50 (1983) 799;TASSO Collaboration, M. Althoff et al., Z. Phys. C22 (1984) 219;JADE Collaboration, W. Bartel et al., Phys. Lett. B132 (1983) 241.Google Scholar
  6. 6.
    B. Grinstein, L. Hall and L. Randall, Phys. Lett. B211 (1988) 363.CrossRefGoogle Scholar
  7. 7.
    S. Raby, G.B. West and C.M. Hoffman, Phys. Rev. D39 (1989) 828.ADSGoogle Scholar
  8. 8.
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Soy. Phys. lisp. 23 (1980) 429.ADSCrossRefGoogle Scholar
  9. 9.
    R.S. Willey and H.L. Yu, Phys. Rev. D26 (1982) 3287.ADSGoogle Scholar
  10. 10.
    T.N. Pham and D.G. Sutherland, Phys. Lett. B151 (1985) 444.Google Scholar
  11. 11.
    R.S. Willey, Phys. Lett. B173 (1986) 480.Google Scholar
  12. 12.
    R. Ruskov, Phys. Lett. B187 (1987) 165.Google Scholar
  13. 13.
    R.S. Chivukula and A.V. Manohar, Phys. Lett. B207 (1988) 86;, B217 (1989) (E)568.Google Scholar
  14. 14.
    R.S. Willey had presented to this workshop, a coupled channel analysis on the final state enhencement of H —* irir and found no large final state enhencement.Google Scholar
  15. 15.
    See also R.S. Willey, Phys. Rev. D39 (1989) 2784 for a recent updating limit on the existence of a light Higgs boson implied by rare K decays.Google Scholar
  16. 16.
    H.Y. Cheng, J. Math. Phys. A4 (1989) 495.Google Scholar
  17. 17.
    F.J. Gilman and M.B. Wise, Phys. Rev. D20 (1979) 2392;ibid. D27 (1983) 1128.Google Scholar
  18. 18.
    M.A. Shifman, A.I. Vainshtein and V.I. zakharov, Phys. Lett. 78B (1978) 443.Google Scholar
  19. 19.
    In the literature Eq.(2.8) is often written as -1(a — b)(p l + p2)2, which is valid only in both chiral and soft — pion limits. In the framework of current algrbra, Eq.(2.8) is derived by applying the soft-pion theorem and the commutator relation [’,Qt] = 0 valid in the chiral limit.Google Scholar
  20. 20.
    S. Raby and G.B. West, Phys. Rev. D38 (1988) 3488.ADSGoogle Scholar
  21. 21.
    C. Bernard, T. Draper, A. soni, H. D. Politzer and M. Wise, Phys. Rev. D32 (1985) 2343.ADSGoogle Scholar
  22. 22.
    Even without CPS symmetry, total derivative chiral terms do not contribute to momentum-conserving processes involving only pseudoscalar mesons.Google Scholar
  23. 23.
    A. Manohar and H. Georgi, Nucl. Phys. B234 (1984) 189.ADSCrossRefGoogle Scholar
  24. 24.
    To obtain Eq.(2.28) we note that the amplitude of or ld has the formGoogle Scholar
  25. 25.
    R.S. Chivukula and A.V. Manohar, Phys. Lett. B217 (1989) (E)568.Google Scholar
  26. 26.
    H. Haber had also demonstrated this point by an explict rotating in this workshop. See also SCIPP-19/14 preprint.Google Scholar
  27. 27.
    We adopt the convention of ref.[13] putting a minus sign in front of the parameter B.Google Scholar
  28. 28.
    Contributions of higer order chiral Lagrangians are of orderm2/A2 H X.Google Scholar
  29. 29.
    L. Wolfenstein, Phys. Rev. Lett. 51 (1984) 1945.ADSCrossRefGoogle Scholar
  30. 30.
    H. Burkhardt et al., Phys. Lett. B206 (1988) 169.Google Scholar
  31. 31.
    H.Y. Cheng, IP-ASTP-10–88.Google Scholar
  32. 32.
    The first term in Eq.(2.37) is in agreement with ref.[25] obtained in a different method.Google Scholar
  33. 33.
    R.J. Cence et al., Phys. Rev. D10 (1974) 776.Google Scholar
  34. 34.
    P. Bloch et al., Phys. Lett. B56 (1975) 201.Google Scholar
  35. 35.
    BNL-787 Experiment, talk presented by D. Marlow at the I2 International Workshop on Weak Interactions and Neutrinos, Ginosar, Isreal, April 1989.Google Scholar
  36. 36.
    T. Yamazaki et. al., Phys. Rev. Lett. 52 (1984) 1089.Google Scholar
  37. 37.
    Y. Asano et. al., Phys. Lett. B107 (1981) 159; B113 (1982) 195.Google Scholar
  38. 38.
    A. S. Carroll et. al., Phys. Rev. Lett. 44 (1980) 525.ADSCrossRefGoogle Scholar
  39. 39.
    NA31 Collaboration, talk presented by H.G. Sander at the XII International Workshop on Weak Interactions and Neutrinos, Ginosar, Israel, April 1989.Google Scholar
  40. 40.
    T.N. Truong and R.S. willey, PITT-89–05.Google Scholar
  41. 41.
    See e.g. H. Y. Cheng, Phys. Rev. D36 (1987) 2056.Google Scholar
  42. 42.
    However, it should be stressed that (x+7r- (sy5d 1K°) = 0 for the physical K -~ ir+ir-amplitude (see Sec.7.1 of ref.[15]).Google Scholar
  43. 43.
    Our result for Br is numerically different from the branching ratio obtained in ref.[13] by a factor of 1.5.Google Scholar
  44. 44.
    A. M. Diamant-Berger et. al., Phys. Lett. B62 (1970) 485.Google Scholar
  45. 45.
    Sindrum Collaboration, S. Egli et. al., Phys. Lett. B222 (1989) 533.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Hoi-Lai Yu
    • 1
  1. 1.Institute of PhysicsAcademia SinicaNanking, TaipeiTaiwan

Personalised recommendations