Scale-Dependent Evolution of Specialization in a Checkerspot Butterfly: From Individuals to Metapopulations and Ecotypes

  • Chris D. Thomas
  • Michael C. Singer


The population size of insects associated with any resource patch is determined by local birth and death in that patch and by migration into and out of the patch. When resource patches are small and close together, individuals move readily between patches, so very high emigration and immigration rates dominate patterns of local distribution (Kareiva 1983; Harrison 1991). These emigration and immigration rates will be determined principally by behavioral responses to patch attributes. Resource patches may be separate fallen fruits or fungi for Drosophila flies in a small wood (Shorrocks et al. 1990), host-plant individuals of one or more species for the butterfly Euphydryas editha in a meadow (Mackay 1985; Parmesan 1991), Quercus trees in scrub woodland for the leaf miner Stilbosis quadricustatella (Mopper et al. 1995), or widely separated patches of host plant in a landscape for more mobile species, such as patches of Asclepias for migrant Danaus plexippus butterflies (Malcolm and Zalucki 1993). If we are interested in the evolution of resource-use patterns in such a system, the focus is likely to be on patch-choice behaviors that lead to oviposition or feeding and the consequences of these behaviors for individual fitness.


Habitat Patch Assortative Mating Oviposition Preference Plantago Lanceolata Diet Breadth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowers, M. D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas). Evolution 35: 367–375.CrossRefGoogle Scholar
  2. Courtney, S. P. 1982a. Coevolution of pierid butterflies and their cruciferous foodplants:III. Anthocharis cardamines (L.) survival, development and oviposition on different hostplants. Oecologia 51: 91–96.CrossRefGoogle Scholar
  3. Courtney, S. P. 1982b. Coevolution of pierid butterflies and their cruciferous foodplants:IV. Crucifer apparency and Anthocharis cardamines (L.) oviposition. Oecologia 51: 91–96.CrossRefGoogle Scholar
  4. Courtney, S. P., G. K. Chen and A. Gardner. 1989. A general model for individual host selection. Oikos 55: 55–65.CrossRefGoogle Scholar
  5. Dempster, J. P. 1994. The ecology and conservation of Papilio machaon in Britain. Pp. 137–149 in A. S. Pullin (Ed.), Ecology and Conservation of Butterflies. Chapman & Hall, London.Google Scholar
  6. Ehrlich, P. R., D. D. Murphy, M. C. Singer, C. B. Sherwood, R. R. White, and I. L. Brown. 1980. Extinction, reduction, stability and increase: The responses of checkerspot butterfly (Euphydryas) populations to the California drought. Oecologia 46: 101–105.CrossRefGoogle Scholar
  7. Ehrlich, P. R., R. R. White, M. C. Singer, S. W. McKechnie, and L. E. Gilbert. 1975. Checkerspot butterflies: A historical perspective. Science 188: 221–228.PubMedCrossRefGoogle Scholar
  8. Fox, L. R. and P. A. Morrow. 1981. Specialization: Species property or local phenomenon. Science 211: 887–893.PubMedCrossRefGoogle Scholar
  9. Futuyma, D. J., R. R. Cort, and I. van Noordwijk. 1984. Adaptation to host plants in the fall cankerworm (Alsophila pometaria) and its bearing on the evolution of host affiliation in phytophagous insects. Am. Nat. 123: 287–296.CrossRefGoogle Scholar
  10. Gibbs, G. W. 1962. The New Zealand genus Metacris Meyrick (Lepidoptera: Arctiidae) systematics and distribution. Trans. Roy. Soc. New Zealand, Zool. 2: 154–159.Google Scholar
  11. Gilpin, M. E. and I. Hanski (Eds.) 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, London.Google Scholar
  12. Harrison, S. 1989. Long-distance dispersal and colonization in the bay checkerspot butterfly. Ecology 70: 1236–1243.CrossRefGoogle Scholar
  13. Harrison, S. 1991. Local extinction in a metapopulation context: An empirical evaluation. Biol. J. Linn. Soc. 42: 73–88.CrossRefGoogle Scholar
  14. Harrison, S., D. D. Murphy, and P. R. Ehrlich. 1988. Distribution of the bay checkerspot butterfly, Euphydryas editha bayensis: Evidence for a metapopulation model. Am. Nat. 132: 360–382.CrossRefGoogle Scholar
  15. Kareiva, R. 1983. Experimental and mathematical analyses of herbivore movement: Quantifying the influence of plant spacing and quality on foraging discrimination. Ecol. Monogr. 52: 261–282.CrossRefGoogle Scholar
  16. Lima, S. L. and P A. Zollner. 1996. Towards a behavioural ecology of ecological landscapes. Trends Ecol. Evol. 11: 131–135.PubMedCrossRefGoogle Scholar
  17. Mackay, D. A. 1985. Pre-alighting search behavior and host plant selection by ovipositing Euphydryas editha butterflies. Ecology 66: 142–151.CrossRefGoogle Scholar
  18. Malcolm, S. B. and M. R. Zalucki, (Eds.). 1993. Biology and Conservation of the Monarch Butterfly. Natural History Museum of Los Angeles County, Los Angeles, CA.Google Scholar
  19. Moore, R. A. 1987. Patterns and consequences of within-population variation in reproductive strategies. Ph.D. dissertation, University of Texas at Austin.Google Scholar
  20. Moore, S. D. 1989. Patterns of juvenile mortality within an oligophagous insect population. Ecology 70: 1726–1737.CrossRefGoogle Scholar
  21. Mopper, S., M. Beck, D. Simberloff, and P. Stiling. 1995. Local adaptation and agents of selection in a mobile insect. Evolution 49: 810–815.CrossRefGoogle Scholar
  22. New, T.R., R. M. Pyle, J. A. Thomas, C. D. Thomas, and P. C. Hammond. 1995. Butterfly conservation management. Annu. Rev. Entomol. 40: 57–83.CrossRefGoogle Scholar
  23. Ng., D. 1988. A novel level of interaction in plant-insect systems. Nature 334: 611–612.CrossRefGoogle Scholar
  24. Parmesan, C. 1991. Evidence against plant “apparency” as a constraint on evolution of insect search efficiency. J. Insect Behay. 4: 417–430.CrossRefGoogle Scholar
  25. Parmesan, C., M. C. Singer, and I. Harris. 1995. Absence of adaptive learning from the oviposition foraging behavior of a checkerspot butterfly. Anim. Behay. 50: 161–175.CrossRefGoogle Scholar
  26. Radtkey, R. R. and M. C. Singer. 1995. Repeated reversals on host-preference evolution in a specialist insect herbivore. Evolution 49: 351–359.CrossRefGoogle Scholar
  27. Rausher, M. D. 1983. Ecology of host-selection behavior in phytophagous insects. Pp. 223–257 in R. F. Denno and M. S. McClure (Eds.), Variable Plants and Animals in Natural and Managed Systems. Academic Press, New York.Google Scholar
  28. Rausher, M. D., D. A. Mackay and M. C. Singer. 1981. Pre-and post-alighting host discrimination by Euphydryas editha butterflies: The behavioral mechanisms causing clumped distributions of egg clusters. Anim. Behay. 29: 1220–1228.CrossRefGoogle Scholar
  29. Sandoval, C. P. 1994. The effects of the relative geographic scales of gene flow and selection on morph frequencies in the walking-stick Timema cristinae. Evolution 48: 1866–1879.CrossRefGoogle Scholar
  30. Scriber, J. M. 1986. Origins of the regional feeding abilities in the tiger swallowtail butterfly: Ecological monophagy and the Papilio glaucus australis subspecies in Florida. Oecologia 71: 94–103.CrossRefGoogle Scholar
  31. Scriber, J. M. and R. C. Lederhouse. 1992. The thermal environment as a resource dictating patterns of feeding specialization of insect herbivores. Pp. 429–465 in M. D. Hunter, T. Ohgushi and P. W. Price (Eds.), Effects of Resource Distribution on Animal—Plant Interactions. Academic Press, New York.CrossRefGoogle Scholar
  32. Scriber, J. M., R. C. Lederhouse, and R. H. Hagen. 1991. Food plants and evolution within Papilio glaucus and Papilio troilus species groups (Lepidoptera: Papilionidae). Pp. 341–373 in P. W. Price, T. M. Lewinsohn, G. W. Fernandes and W. W. Benson (Eds.), Plant—Animal Interactions: Evolutionary Ecology of Tropical and Temperate Regions. Wiley-Interscience, New York.Google Scholar
  33. Shapiro, A. M. 1995. From the mountains to the prairies to the ocean white foam: Papilio zelicaon makes itself at home. Pp. 67–99 in A. R. Krukeberg, R. B. Walker and A. E. Leviton (Eds.), Genecology and Ecogeographic Races. Pacific Division American Association for the Advancemnt of Science (AAAS), San Francisco, CA.Google Scholar
  34. Shorrocks, B. J., J. Rosewell, and K. Edwards. 1990. Competition on a divided and ephemeral resource: Testing the assumptions. II. Associations. J. Anim. Ecol. 59: 1003–1017.CrossRefGoogle Scholar
  35. Singer, M. C. 1971. Evolution of food-plant preferences in the butterfly Euphydryas editha. Evolution 25: 383–389.CrossRefGoogle Scholar
  36. Singer, M. C. 1982. Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia 52: 224–229.CrossRefGoogle Scholar
  37. Singer, M. C. 1983. Determinants of multiple host use by a phytophagous insect population. Evolution 37: 389–403.CrossRefGoogle Scholar
  38. Singer, M. C. 1995. Behavioral constraints to the evolution of insect diet breadth. Pp. 279–296 in L. Real (Ed.), Behavioral Mechanisms in Evolutionary Ecology. University of Chicago Press, Chicago, IL.Google Scholar
  39. Singer, M. C. and P. R. Ehrlich. 1979. Population dynamics of the checkerspot butterfly Euphydryas editha. Forschritte Zoologishe 25: 53–60.Google Scholar
  40. Singer, M. C., D. Ng, and R. A. Moore. 1991. Genetic variation in oviposition preference between butterfly populations. J. Insect Behay. 4: 531–535.CrossRefGoogle Scholar
  41. Singer, M. C., D. Ng, and C. D. Thomas. 1988. Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42: 977–985.CrossRefGoogle Scholar
  42. Singer, M. C. and C. Parmesan. 1993. Sources of variation in patterns of plant-insect association. Nature 361: 251–253.CrossRefGoogle Scholar
  43. Singer, M. C. and C. D. Thomas. 1996. Evolutionary responses of a butterfly metapopula- tion to human and climate-caused environmental variation. Am. Nat., 148: S9 - S39.CrossRefGoogle Scholar
  44. Singer, M. C., C. D. Thomas, H. L. Billington, and C. Parmesan. 1989. Variation among conspecific insect population in the mechanistic basis of diet breadth. Anim. Behay. 37: 751–759.CrossRefGoogle Scholar
  45. Singer, M. C, C. D. Thomas, H. L. Billington, and C. Parmesan. 1994. Correlates of speed of evolution of host preference in a set of twelve populations of the butterfly Euphydryas editha. Écoscience 1: 107–114.Google Scholar
  46. Singer, M. C., C. D. Thomas, and C. Parmesan. 1993. Rapid human-induced evolution of insect-host associations. Nature 366: 681–683.CrossRefGoogle Scholar
  47. Singer, M. C., R. R. White, D. A. Vasco, C. D. Thomas, and D. A. Boughton. 1995. Multi-character ecotypic variation in Edith’s checkerspot butterfly. Pp 101–114 in A. R. Krukeberg, R. B. Walker, and A. E. Leviton (Eds.), Genecology and Ecogeographic Races. Pacific Division American Association for the Advancement of Science (AAAS), San Francisco, CA.Google Scholar
  48. Thomas, C. D., D. Ng, M. C. Singer, J. L. B. Mallet, C. Parmesan, and H. L. Billington. 1987. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41: 892–901.CrossRefGoogle Scholar
  49. Thomas, C. D. and M. C. Singer. 1987. Variation in host preference affects movement patterns in a butterfly population. Ecology 68: 1262–1267.CrossRefGoogle Scholar
  50. Thomas, C. D., M. C. Singer, and D. A. Boughton. 1996. Catastrophic extinction of population sources in a butterfly metapopulation. Am. Nat. 148: 957–975.CrossRefGoogle Scholar
  51. Thomas, C. D., D. Vasco, M. C. Singer, D. Ng, R. R. White, and D. Hinkley. 1990. Diet divergence in two sympatric congeneric butterflies: Community or species level phenomenon? Evol. Ecol. 4: 62–74.CrossRefGoogle Scholar
  52. Thompson, J. N. 1988a. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 42: 118–128.CrossRefGoogle Scholar
  53. Thompson, J. N. 1988b. Evolutionary genetics of oviposition preference in swallowtail butterflies. Evolution 42: 1223–1234.CrossRefGoogle Scholar
  54. Thompson J. N. 1993. Preference hierarchies and the origin of geographic specialization in host use in swallowtail butterflies. Evolution 47: 1585–1594.CrossRefGoogle Scholar
  55. Thompson, J. N. 1994. The geographic mosaic of evolving interactions. Pp. 419–431 in S. R. Leather, A. D. Watt, N. J. Mills, and K. F. A. Walters (Eds.), Individuals, Populations and Patterns in Ecology. Intercept Ltd., Andover, UK.Google Scholar
  56. Via, S. 1986. Genetic covariance between oviposition preference and larval performance in an insect herbivore. Evolution 40: 778–785.CrossRefGoogle Scholar
  57. Warren, M. S. 1987. The ecology and conservation of the heath fritillary butterfly, Mellicta athalia: I. Host selection and phenology. J. Appl. Ecol. 24: 467–482.CrossRefGoogle Scholar
  58. Wasserman, S. S. 1986. Genetic variation in adaptation to foodplants among populations of the southern cowpea weevil, Callosobruchus maculatus: Evolution of oviposition preference. Entomol. Exp. Appl. 42: 201–212.CrossRefGoogle Scholar
  59. White, R. R. and M. C. Singer. 1974. Geographical distribution of hostplant choice in Euphydryas editha. J. Lepid. Soc. 28: 103–107.Google Scholar
  60. Wiklund, C. 1975. The evolutionary relationship between adult oviposition preferences and larval host plant range in Papilio machaon. Oecologia 18: 185–197.CrossRefGoogle Scholar
  61. Wiklund, C. 1981. Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functional aspects of the hierarchy of oviposition preference. Oikos 36: 163–170.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Chris D. Thomas
    • 1
  • Michael C. Singer
    • 2
  1. 1.Department of BiologyUniversity of LeedsLeedsUK
  2. 2.Department of BiologyUniversity of TexasAustinUSA

Personalised recommendations