Skip to main content

Social Behavior and Its Effects on Colony- and Microgeographic Genetic Structure in Phytophagous Insect Populations

  • Chapter
Genetic Structure and Local Adaptation in Natural Insect Populations

Abstract

Population genetic structure is defined in terms of deviation from panmixis, or random mating, and explicitly refers to nonrandom spatial association of alleles. Nonrandom associations may arise in several ways as a natural consequence of the interplay among behavioral, ecological, and biogeographic factors. At large (macrogeographic) spatial scales, genetic differences between subpopulations may be maintained by natural selection or result from genetic drift associated with isolation by distance and attenuated gene flow. The causes of microgeographic structure—here defined as structure at the spatial scale of individual host plants and localized host plant groups—are more varied. Spatial genotypic association could arise from the joint effects of reproductive output and dispersal whereby physical association is the outcome of environmental constraints such as predation pressure and lack of suitable habitat. On the other hand, behaviors promoting association of related individuals can also produce highly patchy, localized units of genetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackery, P. R. and R. I. Vane-Wright. 1984. Milkweed Butterflies: Their Cladistics and Biology. Comstock Publishing Associates, Ithaca, NY.

    Google Scholar 

  • Akimoto, S. 1981. Gall formation by Eriosoma fondatrices and gall parasitism in Eriosoma yangi (Homoptera, Pemphigidae). KontyĂ» 49: 426–436.

    Google Scholar 

  • Ananthakrishnan, T. N. 1979. Biosystematics of Thysanoptera. Annu. Rev. Entomol. 24: 159–183.

    Google Scholar 

  • Aoki, S. 1975. Descriptions of the Japanese species of Pemphigus and its allied genera (Homoptera: Aphidoidea). Lnsecta Matsumurama, New Series 5: 1–61.

    Google Scholar 

  • Aoki, S. 1977. Colophina clematis (Homoptera: Pemphigidae), an aphid species with “soldiers.” KontyĂ» 45: 276–282.

    Google Scholar 

  • Aoki, S. 1979. Dimorphic first instar larvae produced by the fundatrix of Pachypappa marsupialis (Homoptera, Aphidoidea). KontyĂ» 47: 390–398.

    Google Scholar 

  • Aoki, S. 1987. Evolution of sterile soldiers in aphids. Pages 53–65 in Y. Ito, J. L. Brown and J. Kikkawa (Eds.), Animal Societies: Theories and Facts. Japanese Scientific Socity Press, Tokyo, Japan.

    Google Scholar 

  • Aoki, S. and U. Kurosu. 1992. No attack on conspecifics by soldiers of the gall aphid Ceratoglyphina bambusae (Homoptera) late in the season. Japanese J. Entomol 60: 707–713.

    Google Scholar 

  • Aoki, S., U. Kurosu, and D. Stern. 1991. Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin, in Ceratoglyphina bambusae. Anim. Behay. 42: 865–866.

    Google Scholar 

  • Aoki, S. and S. Makino. 1982. Gall usurpation and lethal fighting among fundatrices of the aphid Epipemphigus niisimae (Homoptera: Pemphigidae). KyontĂ» 50: 365–376.

    Google Scholar 

  • Avise, J. C. 1994. Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York.

    Google Scholar 

  • Batra, S. W. T. 1966. Nests and social behavior of halictine bees of India (Hymenoptera: Halictidae). Indian J. Entomol. 28: 375–393.

    Google Scholar 

  • Benjamin, D. M. 1955. The biology and ecology of the red-headed pine sawfly. USDA Forest Service Technical Bulletin No. 1118.

    Google Scholar 

  • Benson, R. B. 1950. An introduction to the natural history of British sawflies. Trans. Soc. Brit. Entomol. 10: 45–142.

    Google Scholar 

  • Benson, W. W., K. S. Brown, and L. E. Gilbert. 1976. Coevolution of plants and herbivores: Passionflower butterflies. Evolution 29: 659–680.

    Google Scholar 

  • Carlin, N. F., D. S. Gladstein, A. J. Berry, and N. E. Pierce. 1994. Absence of kin discrimination behavior in a soldier-producing aphid, Ceratovacuna japonica (Hemiptera: Pemphigidae; Cerataphidini). J. NY Entomol. Soc. 102: 287–298.

    Google Scholar 

  • Carne, P. B. 1962. The characteristics and behaviour of the saw-fly Perga affinis affinis (Hymenoptera). Aust. J. Zool. 10: 1–38.

    Google Scholar 

  • Codella, S. G. and K. F. Raffa. 1995. Contributions of female oviposition patterns and larval behavior to group defense in conifer sawflies (Hymenoptera: Diprionidae). Oecologia 103: 24–33.

    Google Scholar 

  • Coppel, H. C. and D. M. Benjamin. 1965. Bionomics of the Nearctic pine-feeding diprionids. Annu. Rev. Entomol. 10: 69–96.

    Google Scholar 

  • Costa, J. T. and T. D. Fitzgerald. 1996. Developments in social terminology: Semantic battles in a conceptual war. Trends Ecol. Evol. 11: 285–289.

    PubMed  CAS  Google Scholar 

  • Costa, J. T. and N. E. Pierce. 1997. Social evolution in the Lepidoptera: Ecological context and communication in larval societies. Pp. 407 IH12 in J. C. Choe and B. J. Crespi (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Costa, J. T. and K. G. Ross. 1993. Seasonal decline in intracolony genetic relatedness in eastern tent caterpillars: Implications for social evolution. Behay. Ecol. Sociobiol. 32: 47–54.

    Google Scholar 

  • Costa, J. T. and K. G. Ross. 1994. Hierarchical genetic structure and gene flow in macro-geographic populations of the eastern tent caterpillar (Malacosoma americanum). Evolution 48: 1158–1167.

    Google Scholar 

  • Craig, T. M., and S. Mopper. 1993. Sex ratio variation in sawflies. Pp. 61–92 in M. Wagner and K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants. Academic Press, San Diego, CA.

    Google Scholar 

  • Craig, T. P., P. W. Price, and J. K. Itami. 1992. Facultative sex ratio shifts by a herbivorous insect in response to variation in host plant quality. Oecologia 92: 153–161.

    Google Scholar 

  • Crespi, B. J. 1986a. Territoriality and fighting in a colonial thrips, Hoplothrips pedicularis, and sexual dimorphism in Thysanoptera. Ecol. Entomol. 11: 119–130.

    Google Scholar 

  • Crespi, B. J. 1986b. Size assessment and alternative fighting tactics in Elaphrothrips tuberculatus, (Insecta: Thysanoptera). Anim. Behay. 34: 1324–1335.

    Google Scholar 

  • Crespi, B. J. 1988. Risks and benefits of lethal male fighting in the polygynous, colonial thrips Hopolothrips karnyi. Behay. Ecol. Sociobiol. 22: 293–301.

    Google Scholar 

  • Crespi, B. J. 1992a. Eusociality in Australian gall thrips. Nature 359: 724–726.

    Google Scholar 

  • Crespi, B. J. 1992b. Behavioural ecology of Australian gall thrips (Insecta, Hysanoptera). J. Nat. Hist. 26: 769–809.

    Google Scholar 

  • Crespi, B. J. and J. C. Choe (Eds.). 1997. The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Crespi, B. J., and L. A. Mound. 1997. Ecology and evolution of social behavior among Australian gall thrips and their allies. In J.C. Choe and B.J. Crespi (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK. Pp. 166–180.

    Google Scholar 

  • Crespi, B. J. and D. Yanega. 1995. The definition of eusociality. Behay. Ecol. 6: 109–115.

    Google Scholar 

  • Crozier, R. H., P. Pamilo, and Y. C. Crozier. 1984. Relatedness and microgeographic genetic variation in Rhytidoponera mayri, an Australian and-zone ant. Behay. Ecol. Sociobiol. 15: 143–150.

    Google Scholar 

  • Darwin, C. R. 1859. On the Origin of Species by Means of Natural Selection. J. Murray, London.

    Google Scholar 

  • Dias, B. F. de S. 1975. Comportamento pre-social de sinfitas do Brasil Central. I. Themos olfersii (Klug) (Hymenoptera: Argidae). Stud. Entomol. 18: 401–432.

    Google Scholar 

  • Dias, B. F. de S. 1976. Comportamento pre-social de sinfitas do Brasil Central. II. Dielocerus diasi Smith (Hymenoptera: Argidae). Stud. Entomol. 19: 461–501.

    Google Scholar 

  • Dixon, A. F. G. 1985. Aphid Ecology. Mackie and Son, Ltd., Glasgow, Scotland.

    Google Scholar 

  • Eanes, W. F. and R. K. Koehn. 1978. An analysis of genetic structure in the monarch butterfly, Danaus plexippus L. Evolution 32: 784–797.

    Google Scholar 

  • Eastop, V. F. 1977. Worldwide importance of aphids as virus vectors. Pp. 3–62 in K. F. Har- ris and K. Maramorosch (Eds.), Aphids as Virus Vectors. Academic Press, New York.

    Google Scholar 

  • Edmunds, G. F. and D. N. Alstad. 1978. Coevolution in insect herbivores and conifers. Science 199: 941–945.

    PubMed  Google Scholar 

  • Edmunds, G. F. and D. N. Alstad. 1981. Responses of black pineleaf scales to hostplant variability. Pp. 29–38 in R. Denno and H. Dingle (Eds.), Insect Life History Patterns. Springer-Verlag, New York.

    Google Scholar 

  • Ehrlich, A. H. and P. R. Ehrlich. 1978. Reproductive strategies in the butterflies: I. Mating frequency, plugging, and egg number. J. Kansas Entomol. Soc. 51: 666–697.

    Google Scholar 

  • Eickwort, G. C. 1981. Presocial insects. Pp. 199–280 in H. R. Hermann (Ed.), Social Insects, Vol II. Academic Press, New York.

    Google Scholar 

  • Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Claredon Press, Oxford, UK.

    Google Scholar 

  • Fitzgerald, T. D. 1993. Sociality in caterpillars. Pp. 372–403 in N. E. Stamp and T. M. (Eds.), Casey Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York.

    Google Scholar 

  • Fitzgerald, T. D. 1995. The Tent Caterpillars. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Fitzgerald, T. D. and D. E. Miller. 1983. Tent building behavior of the eastern tent caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). Journal of the Kansas Entomological Society 56: 20–31.

    Google Scholar 

  • Fitzgerald, T. D. and S. C. Peterson. 1983. Elective recruitment communication by the eastern tent caterpillar (Malacosoma americanum). Anim. Behay. 31: 417 142.

    Google Scholar 

  • Fitzgerald, T. D. and S. C. Peterson. 1988. Cooperative foraging and communication in caterpillars. BioScience 38: 20–25.

    Google Scholar 

  • Foster, W. A. 1990. Experimental evidence for effective and altruistic colony defense against natural predators by soldiers of the gall-forming aphid Pemphigus spyrothecae (Hemiptera: Pemphigidae). Behay. Ecol. Sociobiol. 27: 421–430.

    Google Scholar 

  • Foster, W. A. 1996. Duelling aphids: Intraspecific fighting in Astegopteryx minuta (Homoptera: Hormaphididae). Anim. Behay. 51: 645–655.

    Google Scholar 

  • Gadagkar, R. 1994. Why the definition of eusociality is not helpful to understand its evolution and what should we do about it. Oikos 70: 485–487.

    Google Scholar 

  • Gilbert, L. E. and M. C. Singer. 1973. Dispersal and gene flow in a butterfly species. Am. Nat. 107: 58–72.

    Google Scholar 

  • Grafen, A. 1984. Natural selection, kin selection, and group selection. Pp. 62–84 in J. R. Krebs and N. B. Davies (Eds.), Behavioral Ecology: An Evolutionary Approach. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hagen, R. H. 1990. Population structure and host use in hybridizing subspecies of Papilio glaucus (Lepidoptera: Papilionidae). Evolution 44: 1914–1930.

    Google Scholar 

  • Haldane, J. B. S. 1932. The Causes of Evolution. Longmans, Green, New York.

    Google Scholar 

  • Hamilton, W. D. 1964. The genetical evolution of social behaviour. I and II. J. Theor. Biol. 7: 1–52.

    PubMed  CAS  Google Scholar 

  • Hamilton, W. D. 1967. Extraordinary sex ratios. Science /56:477–488.

    Google Scholar 

  • Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects. Arrau. Rev. Ecol. Svst. 3: 193–232.

    Google Scholar 

  • Hardy, A. C. and L. Cheng. 1986. Studies in the distribution of insects by aerial currents: III. Insect drift over the sea. Ecol. Entomol. 11: 283–290.

    Google Scholar 

  • Hill, D. S., P. M. Hore, and I. W. B. Thorton. 1982. Insects of Hong Kong. Hong Kong University Press, Hong Kong.

    Google Scholar 

  • ItĂ´, Y. 1989. The evolutionary biology of sterile soldiers in aphids. Trends Ecol. Evol. 4: 69–73.

    Google Scholar 

  • Jewett, D. M., F. Matsumura, and H. C. Coppel. 1976. Sex pheromone specificity in the pine sawflies: Interchange of acid moieties in an ester. Science 192: 51–53.

    PubMed  CAS  Google Scholar 

  • Johnson, W. T. and H. H. Lyon. 1988. Insects That Feed on Trees and Shrubs. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Karban, R. 1989. Fine-scale adaptation of herbivorous thrips to individual host plants. Nature 340: 60–61.

    Google Scholar 

  • Laidlaw, H. H. Jr. and R. E. Page Jr. 1984. Polyandry in honey bees (Apis mellifera L.): Sperm utilization and intracolony genetic relationships. Genetics 108: 985–997.

    PubMed  CAS  Google Scholar 

  • Lester, R. J. and R. K. Selander. 1981. Genetic relatedness and the social organization of Polistes. Am. Nat. 117: 147–166.

    Google Scholar 

  • Lewis, T. 1973. Thrips: Their Biology, Ecology, and Economic Importance. Academic Press, New York.

    Google Scholar 

  • Loxdale, H. D. 1990. Estimating levels of gene flow between natural populations of cereal aphids (Homoptera: Aphididae). Bull. Entomol. Res. 80: 331–338.

    Google Scholar 

  • Macdonald, J. and C. P. Ohmart. 1993. Life history strategies of Australian pergid sawflies and their interactions with hosts. Pp. 485–502 in M. Wagner and K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants. Academic Press, San Diego, CA.

    Google Scholar 

  • MaetĂ´, K. and N. Yoshida. 1988. Characteristics of the oviposition of the red-headed spruce web-spinning sawfly, Cephalcia isshikii Takeuchi (Hymenoptera: Pamphiliidae). Appl. Entomol. Zool. 23: 361–362.

    Google Scholar 

  • Mallet, J. L. and D. A. Jackson. 1980. The ecology and social behaviour of the Neotropical butterfly Heliconiusxanthocles Bates in Colombia. Zool. J. Linn. Soc. 70: 1–13.

    Google Scholar 

  • Maynard Smith, J. 1976. Group selection. Quart. Rev. Biol. 51: 277–283.

    Google Scholar 

  • McCauley, D. E., M. J. Wade, F. J. Breden, and M. Wohltman. 1988. Spatial and temporal variation in group relatedness: Evidence from the imported willow leaf beetle. Evolution 42: 184–192.

    Google Scholar 

  • McKechnie, S. W., P. P. Ehrlich, and R. R. White. 1975. Population genetics of Euphydryas butterflies: I. Genetic variation and the neutral hypothesis. Genetics 81: 571–594.

    PubMed  CAS  Google Scholar 

  • Menken, S. B. J., W. M. Herrebout, and J. T. Wiebes. 1992. Small ermine moths (Yponomeuta): Their host relations and evolution. Annu. Rev. Entomol. 37: 41–66.

    Google Scholar 

  • Michener, C. D. 1953. Problems in the development of social behavior and communication among insects. Trans. Kan. Acad. Sci. 56: 1–15.

    Google Scholar 

  • Michener, C. D. 1958. The evolution of social behavior in bees. Proc. 10th Int. Cong. Entomol. 2: 441–447.

    Google Scholar 

  • Michener, C. D. 1969. Comparative social behavior of bees. Annu. Rev. Entomol. 14: 299–342.

    Google Scholar 

  • Michod, R. E. 1982. The theory of kin selection. Annu. Rev. Ecol. Syst. 13: 23–55.

    Google Scholar 

  • Michod, R. E. and W. W. Anderson. 1979. Measures of genetic relationship and the concept of inclusive fitness. Am. Nat. 114: 637–647.

    Google Scholar 

  • Mitchell, E. R. 1979. Migration by Spodoptera exigua and S. frugiperda, North American style. Pp. 386–393 in R. L. Rabb and G. G. Kennedy (Eds.), Movement of Highly Mobile Insects. North Carolina State University Graphics, Raleigh. NC.

    Google Scholar 

  • Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.

    PubMed  CAS  Google Scholar 

  • Mopper, S., M. Beck, D. Simberloff, and P. Stiling. 1995. Local adaptation and agents of selection in a mobile insect. Evolution 49: 810–815.

    Google Scholar 

  • Mopper, S. and T. G. Whitham. 1992. The plant stress paradox: Effects on pinyon sawfly fecundity and sex ratios. Ecology 73: 515–525.

    Google Scholar 

  • Moran, N. A. 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37: 321–348.

    Google Scholar 

  • Moran, N. A. 1993. Defenders in the North American aphid Pemphigus obesinymphae. Insectes Sociaux 40: 391–402.

    Google Scholar 

  • Morris, R. F. 1972. Fecundity and colony size in natural populations of Hyphantria cunea. Can. Entomol. 104: 399–409.

    Google Scholar 

  • Mound, L. A. 1970. Intragall variation in Brithothrips fuscus Moulton with notes on other Thysanoptera-induced galls on Acacia phyllodes in Australia. Entomol. Mon. Mag. 105: 159–162.

    Google Scholar 

  • Mound, L. A. 1971. Gall-forming and allied species (Thysanoptera: Phlaeothripidae) from Acacia trees in Australia. Bull. Brit. Mus. Nat. Hist. (Ent.) 25: 389–466.

    Google Scholar 

  • Mound, L. A. and B. J. Crespi. 1992. Two new species of Australian gall thrips from woody stem galls on Casuarina. J. Nat. Hist. 26: 395–406.

    Google Scholar 

  • Mound, L. A. and B. J. Crespi. 1995. Biosystematics of two new gall-inducing thrips with soldiers (Insecta: Thysanoptera) from Acacia trees in Australia. J. Nat. Hist. 29: 147–157.

    Google Scholar 

  • Nafus, D. M. and I. H. Schreiner. 1988. Parental care in a tropical nymphalid butterfly Hypolimnas anomala. Anim. Behan 36: 1425–1431.

    Google Scholar 

  • Otte, D. and J. A. Endler (Eds.). 1989. Speciation and its Consequences. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Page, R. E. 1986. Sperm utilization in social insects. Annu. Rev. Ent. 31: 297–320.

    Google Scholar 

  • Pamilo, P. 1982. Multiple mating in Formica ants. Hereditas 97: 37–45.

    Google Scholar 

  • Pamilo, P. 1983. Genetic differentiation within subdivided populations of Formica ants. Evolution 37: 1010–1022.

    Google Scholar 

  • Pamilo, P. 1984. Genotypic correlation and regression in social groups: Multiple alleles, multiple loci and subdivided populations. Genetics 107: 307–320.

    PubMed  CAS  Google Scholar 

  • Pamilo, P. 1989. Estimating relatedness in social groups. Trends Ecol. Evol. 4:353–355. Pamilo, P. 1990. Comparison of relatedness estimators. Evolution 44:1378–1382.

    Google Scholar 

  • Pamilo, P. and R. H. Crozier. 1982. Measuring genetic relatedness in natural populations: Methodology. Theor. Pop. Biol. 21: 171–193.

    Google Scholar 

  • Parker, G. A. 1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev 45: 525–568.

    Google Scholar 

  • Pashley, D. P., S. J. Johnson, and A. N. Sparks. 1985. Genetic population structure of migratory moths: The fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 78: 756–762.

    Google Scholar 

  • Pelikan, J. 1990. Butting in phlaeothripid larvae. Pp. 51–55 in J. Holman, J. Pelikan, A. F. G. Dixon, and L. Weisman (Eds.), Proceedings of the 3rd International Symposium on Thysanoptera. Kazmierz Dolny, Poland.

    Google Scholar 

  • Pliske, T. E. 1973. Factors determining mating frequencies in some New World butterflies and skippers. Ann. Entomol. Soc. Am. 66: 164–169.

    Google Scholar 

  • Queller, D. C. 1991. Group selection and kin selection. Trends Ecol. Evol. 6: 64.

    PubMed  CAS  Google Scholar 

  • Queller, D. C. and K. F. Goodnight. 1989. Estimating relatedness using genetic markers. Evolution 43: 258–275.

    Google Scholar 

  • Queller, D. C., J. E. Strassmann, and C. R. Hughes. 1992. Genetic relatedness and population structure in primitively eusocial wasps in the genus Mischocyttarus (Hymenoptera: Vespidae). J. Hymen. Res. 1: 81–89.

    Google Scholar 

  • Raman, A. and T. N. Ananthakrishnan. 1984. Biology of gall thrips (Thysanoptera: Insecta). Pp. 107–127 in T. N. Ananthakrishnan (Ed.), Biology of Gall Insects. Oxford and IBH Publishing Co., New Delhi, India.

    Google Scholar 

  • Rausher, M. D. 1982. Population differentiation in Euphydryas editha butterflies: Larval adaptation to different hosts. Evolution 36: 581–590.

    Google Scholar 

  • Reilly, L. M. 1987. Measurements of inbreeding and average relatedness in a termite population. Am. Nat. 130: 339–349.

    Google Scholar 

  • Ross, K. G. 1986. Kin selection and the problem of sperm utilization in social insects. Nature 323: 798–800.

    Google Scholar 

  • Ross, K. G. 1993. The breeding system of the fire ant Solenopsis invicta: Effects on colony genetic structure. Am. Nat. 141: 554–576.

    PubMed  CAS  Google Scholar 

  • Ross, K. G. and R. W. Matthews. 1989. Population genetic structure and social evolution in the sphecid wasp Microstigmus comes. Am. Nat. 134: 574–598.

    Google Scholar 

  • Ross, K. G., E. L. Vargo, and D. J. C. Fletcher. 1988. Colony genetic structure and queen mating frequency in fire ants of the subgenus Solenopsis (Hymenoptera: Formicidae). Biol. J. Lin. Soc. 34: 105–117.

    Google Scholar 

  • Sakata, K. and Y. ItĂ´. 1991. Life history characteristics and behavior of the bamboo aphid, Pseudoregma bambucicola (Hemiptera: Pemphigidae), having sterile soldiers. Insectes Soc. 38: 317–326.

    Google Scholar 

  • Schultz, D. E. and D. C. Allen. 1975. Biology and descriptions of the cherry scallop moth Hydria prunivorata (Lepidoptera: Geometridae). Can. Entomol. 107: 99–106.

    Google Scholar 

  • Schwarz, M. P. 1986. Persistent multi-female nests in an Australian allodapine bee, Exoneura bicolor (Hymenoptera: Anthophoridae). Insectes Soc. 33: 258–277.

    Google Scholar 

  • Setzer, R. W. 1980. Intergall migration in the aphid genus Pemphigus. Ann. Entomol. Soc. Am. 73: 327–331.

    Google Scholar 

  • Sherman, P. W., E. A. Lacey, H. K. Reeve, and L. Keller. 1995. The eusociality continuum. Behay. Ecol. 6: 102–108.

    Google Scholar 

  • Shoemaker, D. D., J. T. Costa, and K. G. Ross. 1992. Estimates of heterozygosity in two social insects using a large number of electrophoretic markers. Heredity 69: 573–582.

    Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.

    Google Scholar 

  • Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    PubMed  CAS  Google Scholar 

  • Smith, D. R. 1993. Systematics, life history, and distribution of sawflies. Pp. 3–32 in M. Wagner and K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants. Academic Press, San Diego, CA.

    Google Scholar 

  • Snyder, T. P. 1974. Lack of enzyme variability in three bee species. Evolution 28: 687–688.

    Google Scholar 

  • Stehr, F. W. and E. F. Cook. 1968. A revision of the genus Malacosoma HĂĽbner in North America (Lepidoptera: Lasiocampidae): Systematics, biology, immatures, and parasites. Smithsonian Institution, United States National Museum Bulletin No. 276.

    Google Scholar 

  • Steiner, W. W. M., D. J. Voegtlin, and M. E. Irwin. 1985. Genetic differentiation and its bearing on migration in North American populations of the corn leaf aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae). Ann. Entomol. Soc. Am. 78: 518–525.

    Google Scholar 

  • Stern, D. L. and W. A. Foster. 1996a. The evolution of soldiers in aphids. Biol. Rev. 71: 27–79.

    PubMed  CAS  Google Scholar 

  • Stern, D. L. and W. A. Foster. 1997. The evolution of sociality in aphids: A clone-eye’s view. ln J. C. Choe and B. J. Crespi (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, Pp. 150–165.

    Google Scholar 

  • Strassmann, J. E., C. R. Hughes, D. C. Queller, S. Turillazzi, R. Cervo, S. K. Davis, and K. F. Goodnight. 1989. Genetic relatedness in primitively eusocial wasps. Nature 342: 268–269.

    Google Scholar 

  • Sugg, D. W., R. K. Chesser, F. S. Dobson, and J. L. Hoogland. 1996. Population genetics meets behavioral ecology. Trends Ecol. Evol. 11: 338–342.

    PubMed  CAS  Google Scholar 

  • Taylor, L. R. 1974. Insect migration, flight periodicity, and the boundary layer. J. Anim. Ecol. 43: 225–238.

    Google Scholar 

  • Trivers, R. L. and H. Hare. 1976. Haplodiploidy and the evolution of social insects. Science 191: 249–263.

    PubMed  CAS  Google Scholar 

  • Turner, J. R. G. 1971. Studies of MĂĽllerian mimicry and its evolution in bullet moths and Heliconiid butterflies. Pages 224–260 in E. R. Creed (Ed.), Ecological Genetics and Evolution. Blackwell Scientific Publishing, Oxford, UK.

    Google Scholar 

  • Uyenoyama, M. K. 1984. Inbreeding and the evolution of altruism under kin selection: Effects on relatedness and group structure. Evolution 38: 778–795.

    Google Scholar 

  • Uyenoyama, M. K. and M. W. Feldman. 1980. Theories of kin and group selection: A population genetics perspective. Theor. Pop. Biol. 17: 380–414.

    CAS  Google Scholar 

  • van Leeuwen, W. J. D. 1956. The aetiology of some thrips galls found on Malaysian Scheffera. Acta Bot. Neerlandica 5: 80–89.

    Google Scholar 

  • Varadarasan, S. and T. N. Ananthakrishnan. 1982. Biological studies on some gall thrips. Proc. Indian Nat. Acad. Sci. B48 1: 35–43.

    Google Scholar 

  • Wade, M. J. 1985. Soft selection, hard selection, kin selection, and group selection. Am. Nat. 125: 61–73.

    Google Scholar 

  • Wade, M. J. and E. Breden. 1986. Life history of natural populations of the imported willow leaf beetle, Plagiodera versicolor (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 79: 73–79.

    Google Scholar 

  • Walter, G. H., K. Ruohomäki, E. Haukioja, and E. Vainio. 1994. Reproductive behaviour of mated and virgin females of a solitary sawfly Dineura virididorsata. Entomol. Exp. Appl. 70:83–90.

    Google Scholar 

  • Warren, L. O. and M. Tadic. 1970. The fall webworm, Hyphantria cunea ( Drury ). University of Arkansas Agricultural Experimental Station Bulletin No. 795.

    Google Scholar 

  • Wcislo, W. T. 1997. Are behavioral classifications blinders to natural variation? In B. J. Crespi and J. C. Choe (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK. Pp. 8–13.

    Google Scholar 

  • West-Eberhard, M. J. 1975. The evolution of social behavior by kin selection. Quart. Rev. Biol. 50: 1–33.

    Google Scholar 

  • Whitham, T. G. 1979. Territorial behavior of Pemphigus gall aphids. Nature 279: 324–325.

    Google Scholar 

  • Wilkinson, G. S. and G. F. McCracken. 1985. On estimating relatedness using genetic markers. Evolution 11: 32–39.

    Google Scholar 

  • Wilkinson, R. C., G. C. Becker, and D. M. Benjamin. 1966. The biology of Neodiprion rugifrons (Hymenoptera: Diprionidae), a sawfly infesting jack pine in Wisconsin. Ann. Entomol. Soc. Am. 59: 786–792.

    Google Scholar 

  • Williams, G. C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Williams, G. C. and D. C. Williams. 1957. Natural selection of individually harmful social adaptations among sibs with special reference to social insects. Evolution 11: 32–39.

    Google Scholar 

  • Wilson, D. S. 1975. A theory of group selection. Proc. Natl. Acad. Sci. USA 72: 143–146.

    PubMed  CAS  Google Scholar 

  • Wilson, D. S. 1977. Structured demes and the evolution of group-advantageous traits. Am. Nat. 111: 157–185.

    Google Scholar 

  • Wilson, D. S. 1983. The group selection controversy: History and current status. Annu. Rev. Ecol. Syst. 14: 159–187.

    Google Scholar 

  • Wilson, E. O. 1971. The Insect Societies. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Wöhrman, K. and J. Tomiuk. 1988. Life cycle strategies and genotypic variability in populations of aphids. J. Genet. 67: 43–52.

    Google Scholar 

  • Woods, P. E. and S. I. Guttman. 1987. Genetic variation in Neodiprion (Hymenoptera: Symphyta: Diprionidae) sawflies and a comment on low levels of genetic diversity within the Hymenoptera. Ann. Entomol. Soc. Am. 80: 590–599.

    Google Scholar 

  • Wool, D. 1984. Gall-forming aphids. Pp. 11–58 in T. N. Ananthakrishnan (Ed.), Biology of Gall Insects. Oxford and IBH Publishing Co., New Delhi, India.

    Google Scholar 

  • Wrensch, D. L. and M. Ebbert (Eds.). 1992. Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman & Hall, New York.

    Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Costa, J.T. (1998). Social Behavior and Its Effects on Colony- and Microgeographic Genetic Structure in Phytophagous Insect Populations. In: Mopper, S., Strauss, S.Y. (eds) Genetic Structure and Local Adaptation in Natural Insect Populations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0902-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0902-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0904-9

  • Online ISBN: 978-1-4757-0902-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics