Advertisement

Population Structure and the Conundrum of Local Adaptation

  • Don Alstad

Abstract

The black pineleaf scale insect (Nuculaspis californica Coleman) is a parasite of western yellow pine (Pinus ponderosa Lawson) and 11 other conifer species (Ferris 1938; Furniss and Carolin 1977). The insects are short-lived relative to their host trees, largely sedentary, and achieve persistent, damaging infestations in areas where airborne dust or the drift of orchard insecticide compromises biological control agents. The abundance of black pineleaf scale varies within an infested stand and correlates with the age and size of the trees; larger, older pines harbor more scales than smaller, younger ones. In the same paper that laid out this basic biology, George Edmunds (1973, p. 765) was first to suggest that “scale populations apparently become adapted to specific host individuals, and population densities can become high only with genetic fitness of the population to the host species and individual.”

Keywords

Local Adaptation Host Tree Malic Enzyme Scale Density Scale Insect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstad, D. N. and K. W. Corbin. 1990. Scale insect allozyme differentiation within and between host trees. Evol. Ecol. 4: 43–56.CrossRefGoogle Scholar
  2. Alstad, D. N. and G. F. Edmunds Jr. 1983a. Selection, outbreeding depression, and the sex ratio of scale insects. Science 220: 93–95.PubMedCrossRefGoogle Scholar
  3. Alstad, D. N. and G. F. Edmunds Jr. 1983b. Adaptation, host specificity and gene flow in the black pineleaf scale. Pp. 413–426 in R. F. Denno and M. S. McClure (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  4. Alstad, D. N. and G. F. Edmunds Jr. 1987. Black pineleaf scale population density in relation to interdemic mating (Hemiptera: Diaspididae). Ann. Entomol. Soc. Am. 80: 652–654.Google Scholar
  5. Alstad, D. N. and G. F. Edmunds Jr. 1989. Haploid and diploid survival differences demonstrate selection in scale insect demes. Evol. Ecol. 3: 253–263.CrossRefGoogle Scholar
  6. Alstad, D. N., G. F. Edmunds Jr., and S. C. Johnson. 1980. Host adaptation, sex ratio, and flight activity in male black pineleaf scale. Ann. Entomol. Soc. Am. 73: 665–667.Google Scholar
  7. Baranyovits, F. 1953. Some aspects of the biology of armoured scale insects. Endeavour 12: 202–209.Google Scholar
  8. Beardsley, J. W. Jr. and R. H. Gonzalez. 1975. The biology and ecology of armored scales. Annu. Rev. Entomol. 20: 47–73.Google Scholar
  9. Bennett, F. D. and S. W. Brown. 1958. Life history and sex determination in the Diaspine scale, Pseudaulacaspis pentagona (Tang.) (Coccoidea). Can. Entomol. 90: 317–324.CrossRefGoogle Scholar
  10. Brown, S. W. 1958. Haplodiploidy in the Diaspididae-confirmation of an evolutionary hypothesis. Evolution 12: 115–116.Google Scholar
  11. Brown, S. W. 1965. Chromosomal survey of the armored and palm scale insects ( Coccoidea: Diaspididae and Phoenicococcidae ). Hilgardia 36: 189–294.Google Scholar
  12. Brown, S. W. and H. L. McKenzie. 1962. Evolutionary patterns in the armored scale insects and their allies. Hilgardia 33: 140–170.Google Scholar
  13. Bull, J. J. 1983. Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, CA.Google Scholar
  14. Bulmer, M. G. and P. D. Taylor. 1980. Dispersal and the sex ratio. Nature 284: 448–449.CrossRefGoogle Scholar
  15. Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton University Press Monographs in Population Biology #18.Google Scholar
  16. Crow, J. F. and M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.Google Scholar
  17. Crozier, R. H. 1985. Adaptive consequences of male-haploidy. Pp. 201–222 in W. Helle and M. W. Sabelis (Eds.), Spider Mites: Their Biology, Natural Enemies and Control Vol. lA. Elsevier Science Publishers, Amsterdam, The Netherlands.Google Scholar
  18. Edmunds, G. F. Jr. 1973. Ecology of black pineleaf scale (Homoptera: Diaspididae). Environ. Entomol. 2: 765–777.Google Scholar
  19. Edmunds, G. F. Jr. and D. N. Alstad. 1978. Coevolution in insect herbivores and conifers. Science 199: 941–945.Google Scholar
  20. Edmunds, G. F. Jr. and D. N. Alstad. 1981. Responses of black pineleaf ccales to host plant variability. Pp. 29–38 in R. F. Denno and H. Dingle (Eds.), Insect Life History Patterns. Springer-Verlag, New York.CrossRefGoogle Scholar
  21. Edmunds, G. F. Jr. and D. N. Alstad. 1985. Malathion induced sex ratio changes in black pineleaf scale. Ann. Entomol. Soc. Am. 70: 403–405.Google Scholar
  22. Endler, J. A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.Google Scholar
  23. Frank, S. A. 1993. Evolution of host-parasite diversity. Evolution 47: 1721–1732.CrossRefGoogle Scholar
  24. Ferris, G. F. 1937–1955. Atlas of the Scale Insects of North America. Stanford University Press, Stanford, CA.Google Scholar
  25. Furniss, R. L. and V. M. Carolin. 1977. Western Forest Insects. USDA Forest Service Michigan Publications No. 1339.Google Scholar
  26. Hairston, N. G. Sr. 1989. Ecological Experiments, Purpose, Design, and Execution. Cambridge University Press, Cambridge, UK.Google Scholar
  27. Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156: 477–488.PubMedCrossRefGoogle Scholar
  28. Hamilton, W. D. 1982. Pathogens as causes of genetic diversity in their host populations. Pp. 269–296 in R. M. Anderson and R. M. May (Eds.), Population Biology of Infectious Diseases. Dahlem Konferenzen, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  29. Hartl, D. and A. G. Clark. 1989. Principles of Population Genetics. Sinauer Associates, Sunderland, MA.Google Scholar
  30. Hayat, M. 1983. The genera of Aphelinidae (Hymenoptera) of the world. Syst. Entomol. 8: 63–102.Google Scholar
  31. Herre, E. A. 1985. Sex ratio adjustment in fig wasps. Science 228: 896–898.Google Scholar
  32. Jaenike, J. 1981. Criteria for ascertaining the existence of host races. Am. Nat. 117: 830–834.Google Scholar
  33. Linhart, Y. B., J. B. Mitton, K. B. Sturgeon, and M. L. Davis. 1979. An analysis of genetic architecture in populations of ponderosa pine. Proc. Symp. on Isozymes of North American Forest Trees and Forest Insects. USDA Forest Service, July 27, 1979. Berkeley, CA.Google Scholar
  34. Linhart, Y. B., J. B. Mitton, K. B. Sturgeon, and M. L. Davis. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407–426.CrossRefGoogle Scholar
  35. Lively, C. M. 1987. Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328: 519–521.CrossRefGoogle Scholar
  36. Luck, R. F. 1973. Natural decline of an insecticide induced outbreak of the pine needle scale, Chionaspis pinifoliae (Fitch) at South Lake Tahoe, California. Ph.D. dissertation, University of California, Berkeley.Google Scholar
  37. Luck, R. E and D. L. Dahlsten. 1974. Bionomics of the pine needle scale, Chionaspis pinifoliae and its natural enemies at South Lake Tahoe, California. Ann. Entomol. Soc. Am. 67: 309–316.Google Scholar
  38. Luck, R. F. and D. L. Dahlsten. 1975. Natural decline of a pine needle scale (Chionaspis pinifoliae) outbreak at South Lake Tahoe, California following cessation of adult mosquito control with malathion. Ecology 56: 893–904.CrossRefGoogle Scholar
  39. Maynard Smith, J. 1978. The Evolution of Sex. Cambridge University Press, Cambridge, UK.Google Scholar
  40. McCauley, D. E. and W. F. Eanes. 1987. Hierarchical population structure analysis of the milkweed beetle, Tetraopes tetraophthalmus ( Forster ). Heredity 58: 193–201.Google Scholar
  41. Michod, R. E. and B. R. Levin (Eds.). 1988. The Evolution of Sex. Sinauer Associates, Sunderland, MA.Google Scholar
  42. Miller, D. R. and M. Kosztarab. 1979. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24: 1–27.Google Scholar
  43. Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.Google Scholar
  44. Murdoch, W. W., J. D. Reeve, C. B Huffaker, and C. E. Kennett. 1984. Biological control of olive scale and its relevance to ecological theory. Am. Nat. 123: 371–392.CrossRefGoogle Scholar
  45. Neel, J. B. and R. H. Ward. 1972. The genetic structure of a tribal population, the Yanomama Indians: VI. Analysis by F-statistics including a comparison with the Makiritare and Xavante. Genetics 72: 639–666.Google Scholar
  46. Nei, M. 1977. F-statistic and analysis of gene diversity in subdivided populations. Ann. Hum. Genet., London 41: 225–233.Google Scholar
  47. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.Google Scholar
  48. Nunney, L. 1985a. Female-biased sex ratios: Individual or group selection? Evolution 39: 349–361.Google Scholar
  49. Nunney, L. 1985b. Group selection, altruism, and structured-deme models. Am. Nat. 126: 212–230.Google Scholar
  50. Nur, U. 1967. Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug. Genetics 56: 375–389.PubMedGoogle Scholar
  51. Nur, U. 1971. Parthenogenesis in coccids. Am. Zool. 11: 301–308.Google Scholar
  52. Rice, W. R. 1983. Parent-offspring pathogen transmission: A selective agent promoting sexual reproduction. Am. Nat. 121: 187–203.Google Scholar
  53. Seger, J. and W. D. Hamilton. 1988. Parasites and sex. Pp. 176–193 in R. E. Michod and B. R. Levin (Eds.), The Evolution of Sex: An Examination of Current Ideas. Sinauer Associates, Sunderland, MA.Google Scholar
  54. Stoetzel, M. B. and J. A. Davidson. 1974. Sexual dimorphism in all stages of the Aspidiotini (Homoptera: Diaspididae). Ann. Entomol. Soc. Am. 67: 138–140.Google Scholar
  55. Taylor, P. D. and M. G. Bulmer 1980. Local mate competition and the sex ratio. J. Theor. Biol. 86: 409–419.Google Scholar
  56. Unruh, T. R. and R. F. Luck. 1987. Deme formation in scale insects: A test with the pinyon needle scale and review of other evidence. Ecol. Entomol. 12: 439–449.CrossRefGoogle Scholar
  57. Weir, B. S. 1990. Genetic Data Analysis. Sinauer Associates, Sunderland, MA.Google Scholar
  58. Weir, B. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.Google Scholar
  59. Werren, J. H. 1980. Sex ratio adaptations to local mate competition in a parasitic wasp. Science 208: 1157–1159.Google Scholar
  60. Williams, G. C. 1975. Sex and evolution. Monographs in Population Biology 8. Princeton University Press, Princeton, NJ.Google Scholar
  61. Wilson, D. S., and R. K. Colwell 1981. Evolution of sex ratio in structured demes. Evolution 35: 882–897.Google Scholar
  62. Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.Google Scholar
  63. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.CrossRefGoogle Scholar
  64. Wright. S. 1978. Evolution and the Genetics of Populations: Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago, IL.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Don Alstad
    • 1
  1. 1.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations