Advertisement

Current Ideas and Methods for Calculation of Ground State Properties of Solids

  • Richard M. Martin

Abstract

The purpose of my contribution to this NATO Institute is to provide background for understanding the progress that has been made recently in the field of calculation of the properties of solids in their electronic ground state. I will attempt to give my perspective on the fundamental concepts, the most significant steps in the development of current methods, important results of calculations, and directions for future research. Although this is not meant to be a comprehensive review, I will attempt to describe the breadth of current work, giving examples of diverse methods and applications. This paper is organized to discuss the basic many-body problem in Section II, the techniques for ab initio solutions in Sections in Sections Ill and IV, and results of calculations in Section V. The notation and perspective that is presented here builds upon the published work by D.J. Chadi, H. Wendel, K. Kunc, O. H. Nielsen, and myself.1–11 Other papers in this proceedings by Kunc12 and Nielsen13 will present further insights into the general theory and specific results.

Keywords

Charge Density Fermi Surface Ground State Energy Transition Pressure Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Chadi and R. M. Martin, Solid State Commun. 19, 643 (1976).CrossRefGoogle Scholar
  2. 2.
    H. Wendel and R. M. Martin, Phys. Rev. Lett. 40, 950 (1978); Phys. Rev. B 19, 5251 (1979).Google Scholar
  3. 3.
    R. M. Martin and K. Kunc, Phys. Rev. B 24, 2081 (1981).CrossRefGoogle Scholar
  4. 4.
    K. Kunc and R. M. Martin, Phys. Rev. B 24, 2331 (1981).Google Scholar
  5. 5.
    K. Kunc and R. M. Martin, Phys. Rev. B 24, 3445 (1981).CrossRefGoogle Scholar
  6. 6.
    R. M. Martin and K. Kunc, J. de Physique 42, C6–617 (1981) (review).Google Scholar
  7. 7.
    R. M. Martin and K. Kunc, in Ab Initio Calculation of Phonon Spectra, ed. by J.T. Devreese (Plenum, 1983 ), p. 49.Google Scholar
  8. 8.
    K. Kunc and R. M. Martin, in Ab Initio Calculation of Phonon Spectra, ed. by J.T. Devreese (Plenum, 1983 ), p. 65.Google Scholar
  9. 9.
    K. Kunc and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982).CrossRefGoogle Scholar
  10. 10.
    K. Kunc and R. M. Martin, in Proc. 16th Int. Conf. on the Physics of Semiconductors, Physica 117B and 118B, 511 (1983) (review).Google Scholar
  11. 11.
    O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983), and to be published.CrossRefGoogle Scholar
  12. 12.
    K. Kunc, these proceedings.Google Scholar
  13. 13.
    O. H. Neilsen, these proceedings.Google Scholar
  14. 14.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices ( Oxford University Press, Oxford, 1954 ).Google Scholar
  15. 15.
    L. J. Sham, Phys. Rev. 188, 1451 (1969).CrossRefGoogle Scholar
  16. 16.
    R. M. Pick, M. H. Cohen, and R. M. Martin, Phys Rev. B 1, 910 (1970).CrossRefGoogle Scholar
  17. 17.
    E. P. Wigner and F. Seitz, Solid State Physics, ed. by F. Seitz and D. Turnbull (Academic Press, New York, 1955), Vol. 1, p. 97.Google Scholar
  18. 18.
    J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1963, 1967 ) vol. 1, 3.Google Scholar
  19. 19.
    P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) 3864.CrossRefGoogle Scholar
  20. 20.
    W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133, and L. J. Sham and W. Kohn, Phys. Rev. 145 (1966) B561.Google Scholar
  21. 21.
    For reviews of the density functional ideas and techniques, see Theory of the Inhomogenous Electron Gas, ed. by S. Lundquist and N. H. March, ( Plenum Press, New York, 1983 ).Google Scholar
  22. 22.
    Recent work to extend the LDF to excited states includes C. S. Wang and W. E. Pickett, Phys. Rev. Lett. 51, 597 (1983); J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983); and L. J. Sham and M. Schülter, Phys. Rev. Lett. 51, 1888 (1983).Google Scholar
  23. 23.
    See, for example, the review of high pressure experiments using the diamond cell by A. Jayaraman, Rev. Mod. Phys., 55, 65 (1983).CrossRefGoogle Scholar
  24. 24.
    See, for example, the review by J A. Appelbaum and D. R. Hamann, Rev. Mod. Phys. 48, 479 (1976), and recent papers by K. C. Pandey, Phys. Rev. Lett. 47, 1913 (1982); J. E. Northrup and M. L. Cohen, J. Vac. Sci. Technol. 21, 333 (1982); Phys. Rev. Lett. 49, 1349 (1982); and to be published.Google Scholar
  25. 25.
    V. L. Moruzzi, J. F. Janak and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon NY, 1978) and refs. thereinGoogle Scholar
  26. 26.
    A. R. Williams and U. von Barth, in Ref. 19, p. 189.Google Scholar
  27. 27.
    V. Heine, in Solid State Physics, ed by F Seitz and D. Turnbull (Academic Press, New York, 1980), Vol. 35, p. 1.Google Scholar
  28. 28.
    M. L. Cohen, Proc. 15th Int. Conf. on the Physics of Semiconductors, J. Phys. Soc. Japan 49, 13 (1980) (review).Google Scholar
  29. 29.
    See papers in Ab Initio Calculation of Phonon Spectra,ed. by J. T. Devreese (Plenum, 1983).Google Scholar
  30. 30.
    R. Biswas, R. M. Martin, R. Needs, and O. H. Nielsen, to be published in Phys. Rev.Google Scholar
  31. 31.
    S. Froyen and M. L. Cohen, Phys. Rev. 28, 3258 (1983).Google Scholar
  32. 32.
    R. Needs, R. M. Martin, and O. H. Nielsen, to be published.Google Scholar
  33. 33.
    For work on molecules, see, for example, M. M. Franci, et. al., J. Chem. Phys. 77, 3654 (1982) and references therein.Google Scholar
  34. 34.
    O. Gunnarsson, J. Harris, and R. O. Jones, J. Chem. Phys. 67, 3970 (1977).Google Scholar
  35. 35.
    M. M. Goodgame and W. A. Goddard, Ill, Phys. Rev. Lett. 48, 135 (1982).CrossRefGoogle Scholar
  36. 36.
    B. Delley, A. J. Freeman, and D. E. Ellis, Phys. Rev. Lett. 50, 488 (1983).Google Scholar
  37. 37.
    H. Hellmann, Einführung in die Quantenchemie, (Deuticke, Leipzig, 1937), p. 61 and 285.Google Scholar
  38. 38.
    R. P. Feynman, Phys. Rev. 56, 340 (1939) and undergraduate thesis, MIT, unpublished.Google Scholar
  39. 39.
    See the review, “The Force Concept in Chemistry” by B. M. Deb, Rev. Mod. Phys. 43, 22 (1973).Google Scholar
  40. 40.
    P. Pulay, Mol. Phys. 17, 197 (1969).CrossRefGoogle Scholar
  41. 41.
    J. C. Slater, J. Chem. Phys. 1, 687 (1933).CrossRefGoogle Scholar
  42. 42.
    J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979); erratum 13, 3095 (1980).Google Scholar
  43. 43.
    K.-M. Ho, C.-L. Fu, and B. N. Harmon, Phys. Rev. 28, 6687 (1983).CrossRefGoogle Scholar
  44. 44.
    M. Weinert, to be published.Google Scholar
  45. 45.
    P. Ehrenfest, Z. Phys. 45, 455 (1927).CrossRefGoogle Scholar
  46. 46.
    O. K. Anderson, H. L. Skreiver, H. Nohl, and B. Johansson, Pure and Appl. Chem. 52, 97 (1979) and A. R. Macintosh and O. K. Andersen, Electrons of the Fermi Surface, ed. by M. Springford ( Cambridge Press, Cambridge, 1979 ).Google Scholar
  47. 47.
    D. G. Pettifor, Commun. Phys. 1, 141 (1976), J. Chem. Phys. 69, 2930 (1978).Google Scholar
  48. 48.
    J. R. Celikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984).Google Scholar
  49. 49.
    R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972).CrossRefGoogle Scholar
  50. 50.
    V. Fock, Z. Phys. 63, 855 (1930).Google Scholar
  51. 51.
    M. Born, W. Heisenberg and P. Jordan, Z. Phys. 35, 557 (1926); E. Schrödinger, Ann. d. Phys. 82 265 (1927).Google Scholar
  52. 52.
    W. Pauli, in Handbuch der Physik,Band XXIV, 1. Teil, p. 83–272.Google Scholar
  53. 53.
    A. G. McLeliand, Am. J. Phys. 42, 239 (1974); J. Phys. C 17, 1 (1984).Google Scholar
  54. 54.
    For discussion at the second-order perturbation expansions, see the papers in these proceedings by J. T. Devreese, A. Baldereschi, and R. Resta, and Refs. 15 and 16. For review of calculations of harmonic force constants see, for example, S. K. Sinha, Crit. Rev. Solid Stage Sci. 3, 273 (1973).Google Scholar
  55. 55.
    P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Phys. Rev. Lett. 42, 1223 (1929); Phys. Rev. B 25, 4270 (1982); and to be published.Google Scholar
  56. 56.
    C. Falter, M. Selmke, W. Ludwig, and W. Zierau, J. Phys. C 17, 21 (1984), and references therein.CrossRefGoogle Scholar
  57. 57.
    D. C. Allan and E. Mele, to be published.Google Scholar
  58. 58.
    M. T. Yin and M. L. Cohen, Phys. Rev. B 25, 4317 (1982).Google Scholar
  59. 59.
    P. W. Anderson, Basic Notions of Condensed Matter Physics. (Benjamin/Cummings Publishing Co., Menlo Park, CA, 1984 ).Google Scholar
  60. 60.
    H. Bethe, Z. Phys. 71, 205 (1931).CrossRefGoogle Scholar
  61. 61.
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).Google Scholar
  62. 62.
    A. M. Tsvelick and P. B. Weigmann, J. Phys. C 20, 1707 (1982); N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983), and references therein.Google Scholar
  63. 63.
    J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106 (1982).Google Scholar
  64. 64.
    R. Jullian and R. M. Martin, Phys. Rev. B 26, 6173 (1982).Google Scholar
  65. 65.
    K. G. Wilson, Rev. Mod. Phys. 67, 773 (1975).CrossRefGoogle Scholar
  66. 66.
    J. E. Hirsch and D. J. Scallapino, Physics Today 36, 44 (1983) and references therein.CrossRefGoogle Scholar
  67. 67.
    C. M. Ceperley, Phys. Rev. B 18, 3126 (1978); C. M. C.perley and B. J. Aider, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
  68. 68.
    C. M. Ceperley and B. J. Alder, Physica 108B, 875 (1981), and to be published.Google Scholar
  69. 69.
    E. P. Wigner, Phys. Rev. 46, 1002 (1938).CrossRefGoogle Scholar
  70. 70.
    J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1980).Google Scholar
  71. 71.
    L. Hedin and B. I. Lundquist, J. Phys. C 4, 2064 (1971); O. Gunnarsson and B. I. Lundquist, Phys. Rev. B 13, 4274 (1976).Google Scholar
  72. 72.
    See for example Ref. 120.Google Scholar
  73. 73.
    A. Zunger, private commun.Google Scholar
  74. 74.
    D. R. Hamann, M. Schlüter and C. Chaing, Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
  75. 75.
    C. Kerker, J. Phys. C 13, L189 (1980).Google Scholar
  76. 76.
    G. B. Bachelet, D. R. Hamann and M. Schlüter, Phys. Rev. B 26, 4199 (1982).CrossRefGoogle Scholar
  77. 77.
    G. B. Bachlet, H. S. Greenside, G. A. Baraff, and M. Schluter, Phys. Rev. B 24, 4745 (1981).Google Scholar
  78. 78.
    A general discussion of band structure methods is given by N. W. Aschroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976 ); A review is given in Computational Methods in Band Theory, P. M. Marcus, J. F. Janak, and A. R. Williams, editors ( Plenom Press, New York, 1971 ).Google Scholar
  79. 79.
    J. Korringa, Physica 13, 392 (1947) and W. Kohn and N. Rostocker, Phys. Rev. 94, 1111 (1954).Google Scholar
  80. 80.
    J. C. Slater, Phys. Rev. 51, 846 (1937); T. L. Loucks, Augmented Plane Wave Method, (W. A. Benjamin, Menlo Park, CA, 1967 ).Google Scholar
  81. 81.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  82. 82.
    H. L. Skriver, Muffin Tin Orbitals and Electronic Structure (Springer-Verlag, Berlin, 1984) and references therein).Google Scholar
  83. 83.
    A. R. Williams, J. Kühler, and C. D. Gelatt, Jr., Phys. Rev. B 19, 6094 (1979).CrossRefGoogle Scholar
  84. 84.
    D. A. Liberman, Phys. Rev. B 2, 244 (1970) and B 3, 2081 (1971).Google Scholar
  85. 85.
    J. F. Janak, Phys. Rev. B 9, 3985 (1974).CrossRefGoogle Scholar
  86. 86.
    M. Ross and K. W. Johnson, Phys. Rev. B 2, 4709 (1970).Google Scholar
  87. 87.
    F. W. Averill, Phys. Rev. B 6, 3637 (1972).CrossRefGoogle Scholar
  88. 88.
    W. C. Herring, Phys. Rev. 57, 1169 (1940).Google Scholar
  89. 89.
    M. T. Yin and M. L. Cohen, Phys. Rev. B 25, 7403 (1982).CrossRefGoogle Scholar
  90. 90.
    M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259 (1982).Google Scholar
  91. 91.
    K. Fuchs, Proc. Roy. Soc. London A 151, 585 (1935).CrossRefGoogle Scholar
  92. 92.
    Note that there are many restrictions in the derivation, e. g., there can be no macroscopic field in the energy for the periodic solid.Google Scholar
  93. 93.
    A. Zunger and A. J. Freeman, Phys. Rev. B 15, 5049 (1977).Google Scholar
  94. 94.
    H. Sambe and R. H. Felton, J. Chem. Phys. 62, 1122 (1975).Google Scholar
  95. 95.
    P. Feibelman, J. A. Appelbaum, and D. R. Hamann, Phys. Rev. B 20, 1433 (1979).CrossRefGoogle Scholar
  96. 96.
    B. N. Harmon, W. Weber, and D. R. Hamann, Phys. Rev. B 25, 1109 (1982).CrossRefGoogle Scholar
  97. 97.
    J. C. Boettger and S. B. Trickey, Phys. Rev. B 29, 6425 (1984).CrossRefGoogle Scholar
  98. 98.
    S. G. Louie, K. M. Ho and M. C. Cohen, Phys. Rev. B 19, 1774 (1979).CrossRefGoogle Scholar
  99. 99.
    M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).CrossRefGoogle Scholar
  100. 100.
    P. K. Lam and M. L. Cohen, B24, 4224 (1981).Google Scholar
  101. 101.
    J. Rath and A. J. Freeman, Phys. Rev. B11, 2109 (1975).CrossRefGoogle Scholar
  102. 102.
    O. Jepsen, and O. K. Anderson, Solid State Commun. 9, 1763 (1971).CrossRefGoogle Scholar
  103. 103.
    K.-M. Ho, C.-L. Fu, and B. N. Harmon, Phys. Rev. 29, 1575 (1984).CrossRefGoogle Scholar
  104. 104.
    R. J. Needs and R. M. Martin, to be published.Google Scholar
  105. 105.
    A. Baldereschi, Phys. Rev. B7, 5212 (1973).CrossRefGoogle Scholar
  106. 106.
    D. J. Chadi and M. L. Cohen, Phys. Rev. B8, 5747 (1973).CrossRefGoogle Scholar
  107. 107.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).CrossRefGoogle Scholar
  108. 108.
    K. M. Ho, J. Ihm, and J. D. Joannopoulos, Phys. Rev. B 25, 4260 (1982).CrossRefGoogle Scholar
  109. 109.
    Broyden’s method is discussed in Ref. 13.Google Scholar
  110. 110.
    E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).CrossRefGoogle Scholar
  111. 111.
    See discussion and references in A. E. Carlsson and N. W. Ashcroft, Phys. Rev. Lett. 50, 1305 (1983).CrossRefGoogle Scholar
  112. 112.
    B. I. Min, H. J. F. Jansen and A. J. Freeman, to be published, and references therein.Google Scholar
  113. 113.
    V. T. Rajan and C. W. Woo, Phys. Rev. B 18, 4048 (1978).CrossRefGoogle Scholar
  114. 114.
    S. Chakravarty, J. H. Rose, D. Wood, and N. W. Ashcroft, Phys. Rev. B 24, 1624 (1981).CrossRefGoogle Scholar
  115. 115.
    E. Ostgaard, Phys. Lett. 45A, 371 (1973).Google Scholar
  116. 116.
    B. J. Alder and D. M. Ceperly, private communication.Google Scholar
  117. 117.
    J. C. Boettger and S. B. Trickey, Phys. Rev. B 29, 6434 (1984).CrossRefGoogle Scholar
  118. 118.
    J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12, 1257 (1975).CrossRefGoogle Scholar
  119. 119.
    J. A. Morriarity and A. K. McMahon, Phys. Rev. Lett. 48, 809 (1982).CrossRefGoogle Scholar
  120. 120.
    A. K. McMahan, M. T. Yin, and M. L. Cohen, Phys. Rev. B 24, 7210 (1981).CrossRefGoogle Scholar
  121. 121.
    A. K. McMahan, to be published.Google Scholar
  122. 122.
    See, for example, M. Ross and A. K. McMahon, Phys. Rev. B 21, 1658 (1980), and references therein.Google Scholar
  123. 123.
    V. L. Moruzzi, A. R. Williams and J. F. Janak, Phys. Rev. B 15, 2584 (1977).CrossRefGoogle Scholar
  124. 124.
    K.-M. Ho, C.-L. Fu, and B. N. Harmon, to be published.Google Scholar
  125. 125.
    J. Ihm and M. L. Cohen, Phys. Rev. B21, 1527 (1980); B23, 1576 (1980).Google Scholar
  126. 126.
    M. T. Yin and M. L. Cohen, Phys. Rev. B26, 5668 (1982)CrossRefGoogle Scholar
  127. 127.
    M. T. Yin and M. L. Cohen, Phys. Rev. B24, 6121 (1981); Phys. Rev.Lett. 50, 2006 (1983); Phys. Rev. B29, 6996 (1984).Google Scholar
  128. 128.
    M. Y. Chou, P. K. Lam and M. L. Cohen, Solid State Comm. 42, 861 (1982).CrossRefGoogle Scholar
  129. 129.
    A. Zunger, Phys. Rev. B21, 4785 (1981).CrossRefGoogle Scholar
  130. 130.
    S. G. Louie, these ‘proceedings.Google Scholar
  131. 131.
    E. Holzschuh, Phys. Rev. B28, 7346 (1983).CrossRefGoogle Scholar
  132. 132.
    D. Vanderbilt and J. D. Joannopoulos, Phys. Rev. B27, 6296, 6302, and 6311 (1983).CrossRefGoogle Scholar
  133. 133.
    G. A. Barraff, and M. Schluter, Phys. Rev. Lett. 41, 892 (1978); J. Bernholc, N. O. Lipari, and S. T. Pantelides, Phys. Rev. Lett. 41, 895 (1978).CrossRefGoogle Scholar
  134. 134.
    G. A. Barraff, and M. Schluter, and G. Allan, Phys. Rev. Lett. 50, 739 (1984).CrossRefGoogle Scholar
  135. 135.
    Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. Lett. 52, 1129 (1984).CrossRefGoogle Scholar
  136. 136.
    R. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides, Phys. Rev. Lett. 52, 1814 (1984).CrossRefGoogle Scholar
  137. 137.
    D. Glotzel, B. Segall, and O. K. Anderson, Solid State Commun. 36, 403 (1980).CrossRefGoogle Scholar
  138. 138.
    J. B. McKitterick, Phys. Rev. B28, 7384 (1983).CrossRefGoogle Scholar
  139. 139.
    K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983); R. Resta, these proceedings.Google Scholar
  140. 140.
    F. Pollack, these proceedings.Google Scholar
  141. 141.
    F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).CrossRefGoogle Scholar
  142. 142.
    H. Olijnyk, S. K. Sikka and W. B. Holzapfel, Phys. Lett. 103A, 137 (1984).Google Scholar
  143. 143.
    J. Z. Hu and I. L. Spain, to be published.Google Scholar
  144. 144.
    J. Donohue, The Structures of the Elements ( Wiley, New York 1974 ).Google Scholar
  145. 145.
    B. C. Giessen, Advan. X - Ray Analysis 12, 23 (1969).CrossRefGoogle Scholar
  146. 146.
    R.H. Wentorf, Jr. and J.S. Kaspar, Science 139, 338 (1963);J.S, Kaspar and S.M. Richards, Acta.Cryst. 17, 752 (1964).Google Scholar
  147. 147.
    J.D. Joannopoulos and M.L. Cohen, Solid State Physics 31, 71 (1976).CrossRefGoogle Scholar
  148. 148.
    M. T. Yin, to be published.Google Scholar
  149. 149.
    R. J. Kobliska, S.A. Solin, M. Selders, R.K. Chang, R. Alben, M.F. Thorpe and D. Weaire, Phys. Rev. Lett. 29, 725 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Richard M. Martin
    • 1
  1. 1.Xerox PARCPalo AltoUSA

Personalised recommendations