Advertisement

Photoresponsiveness and Models: Contributions and General Discussion

  • B. F. Erlanger
  • G. Montagnoli
  • W. ShropshireJr.
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

The study of photoreception in living organisms is a broad field of research. The lectures reported in the preceding chapters demonstrate that the field is amenable to a multidisciplinary approach. Individual contributions in the area of basic mechanisms of photoregulation, and in their application to systems that function in plant and animals, were also presented in addition to descriptions of model systems.

Keywords

Nitrate Reductase Action Spectrum Sulfite Oxidase Thymine Dimer Bulb Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Coohill, Action spectra for mammalian cells in vitro, to appear in: “Current Topics in Photomedicine”, K. C. Smith, ed., Pergamon Press, Oxford (1983).Google Scholar
  2. 2.
    T. P. Coohill, D. J. Knauer and D. G. Fry, The effects of changes in cell geometry on the sensitivity to UV radiation of mammalian cellular capacity, Photochem. Photobiol. 30: 565 (1979).CrossRefGoogle Scholar
  3. 3.
    T. P. Coohill, R. A. Grider and S. P. Moore, Monochromatic UV and sunlight effects on photosensitive mammalian cells, in: Abstr. 9th Ann. Meeting Amer. Soc. Photobiol,, Virginia (1981).Google Scholar
  4. 4.
    S. M. Keyse, S. H. Moss and D. H. G. Davies, An ultraviolet action spectrum for cell killing in normal and xeroderma pigmentosum human skin fibroblasts, in: Abstr. 10th Ann. Meeting Amer. Soc. Photobiol., Vancouver, Canada (1982).Google Scholar
  5. 5.
    G. Horneck, Survival of microorganisms in space: a review, Adv. Space Res., COSPAR 1: 39 (1981).CrossRefGoogle Scholar
  6. 6.
    G. Horneck and H. Backer, Reparatur von UV-Schäden nach Bestrahlung von Bakterien im Vakuum, Strahlentherapie 141: 732 (1971).Google Scholar
  7. 7.
    G. Horneck and H. Backer, Increased radiosensitivity of microorganisms by vacuum treatment, in: “Combination Processes in Food Irradiation”, IAEA (1981).Google Scholar
  8. 8.
    M. Schwager, C. Thomas, G. Horneck and H. Bucker, Photoproducts in E. coli cells produced by UV irradiation in vacuum, VIth International Congress on Photobiology, Bochum (1972).Google Scholar
  9. 9.
    H. Bücker., K. Dose, G. Horneck and C. Thomas, A special photo-product of UV-irradiated DNA in vacuo, in: “COSPAR Life Sciences and Space Research”, Vol. 17, R. Holmquist, ed., Pergamon Press, Oxford (1979).Google Scholar
  10. 10.
    H. Harm, Repair of UV-irradiated biological systems: Photoreactivation, in: “Photochemistry and Photobiology of Nucleic Acids, Vol II Biology”, S. Y. Wang, ed., Academic Press, New York (1976).Google Scholar
  11. 11.
    E. Ben-Hur and R. Ben-Ishai, Trans-syn thymine dimers in ultraviolet-irradiated denatured DNA: identification and photoreactivability, Biochem. Biophys. Acta 166: 9 (1968).CrossRefGoogle Scholar
  12. 12.
    C. W. Jamieson, M. S. Litwin, S. E. Longo and E.T. Krementz, Enhancement of melanoma cell culture growth rate by ruby laser radiation, Life Sci. 8: 101 (1969).CrossRefGoogle Scholar
  13. 13.
    N. F. Gamaleya, Laser biomedical research in the USSR, in: “Laser Applications in Medicine and Biology”, Vol. 3, M. L. Wolbarsht, ed., Plenum Press, New York (1977).Google Scholar
  14. 14.
    R. H. Stern, Dentistry and the laser, in: “Laser Applications in Medicine and Biology”, Vol. 1, M. L. Wolbarsht, ed., Plenum Press, New York, (1971).Google Scholar
  15. 15.
    E. Mester, Clinical results of wound-healing stimulation with laser and experimental studies of the action mechanism, Laser 75 Opto Electronics 119 (1975).Google Scholar
  16. 16.
    J. S. Kana, G. Hutschenreiter, D. Haina and W. Waidelich, Effect of low power density laser radiation on healing of open skin wounds in rats, Arch. Surg. 116: 293 (1981).Google Scholar
  17. 17.
    M. W. Berns, Biological, photochemical and spectroscopic applications of lasers, in: “Photochemical and Photobiological Review”, Vol. 2, K. C. Smith, ed., Plenum Press, New York (1977).Google Scholar
  18. 18.
    S. Passarella, M. C. Dechecchi, E. Quagliariello, I. M. Catalano and A. Cingolani, Optical and biochemical properties of NADH irradiated by high peak power Q-switched ruby laser or by low power c.w. HeNe laser, Bioelectrochem. Bioenerg. 8: 315 (1981).Google Scholar
  19. 19.
    R. J. Cremer, P. W. Perryman and D. H. Richards, Influence of light on the hyperbilirubinemia of infants, Lancet 1: 1094 (1958).CrossRefGoogle Scholar
  20. 20.
    S. C. Glauser, S. A. Lombard, E. M. Glauser and T. R. C. Sisson, Action spectrum for the photodestruction of bilirubin, Proc. Soc. Exp. Biol. Med. 136: 518 (1971).Google Scholar
  21. 21.
    T. R. C. Sisson, N. Kendall, E. Shaw and L. Kechavarz-Oliai, Phototherapy of jaundice in the newborn infant. Effect of various light intensities, J. Pediat. 81: 35 (1972).CrossRefGoogle Scholar
  22. 22.
    G. Sbrana, M. G. Migliorini, C. Vecchi and G. P. Donzelli, Laser photolysis of bilirubin, Ped. Res. 15: 1517 (1981).Google Scholar
  23. 23.
    C. Vecchi, G. P. Donzelli, M. G. Migliorini, G. Sbrana and R. Pratesi, Green light in phototherapy of hyperbilirubinemia, in: Proc. 3rd Natl. Congress on Quantum Electronics, Como (1982).Google Scholar
  24. 24.
    C. Vecchi, G. P. Donzelli, M. G. Migliorini, G. Sbrana and R. Pratesi, New light in phototherapy, Lancet 2: 390 (1982).CrossRefGoogle Scholar
  25. 25.
    C. Vecchi, G. P. Donzelli, M. G. Migliorini and G. Sbrana, Green light in phototherapy, Ped. Res. (in press).Google Scholar
  26. 26.
    T. R. C. Sisson, Visible light therapy of neonatal hyperlibirubinemia, in: “Photochemical and Photobiological Reviews” Vol. 1, K. C. Smith, ed., Plenum Press, New York (1976).Google Scholar
  27. 27.
    R. Parshad, R. Gantt, K. K. Sanford, G. M. Jones and R. F. Camalier, Light-induced chromatic damage in human skin fibroblasts in culture in relation to their neoplastic potential, Int. J. Cancer 28: 335 (1981).CrossRefGoogle Scholar
  28. 28.
    S. Wan, J. A. Parrish, R. R. Anderson and M. Madden, Transmittance of non-ionizing radiation in the human tissues, Photochem. Photobiol. 34: 679 (1981).Google Scholar
  29. 29.
    W. T. Ham, Jr., H. A. Mueller and D. A. Sliney, Retinal sensitivity to damage from short wavelength light, Nature 260: 153 (1976).CrossRefGoogle Scholar
  30. 30.
    R. R. Anderson and J. A, Parrish, The optics of human skin, J. Invest. Dermatol. 77: 13 (1981).CrossRefGoogle Scholar
  31. 31.
    A. F. McDonagh, L. A. Palma and D. A. Lightner, Blue light and bilirubin excretion, Science 208: 145 (1980).CrossRefGoogle Scholar
  32. 32.
    A. R. Holzwarth and K. Schaffner, Wavelength dependence of quantum yields and product distribution in the anaerobic photochemistry of bilirubin dimethyl ester, Photochem. Photobiol. 33: 635 (1981).CrossRefGoogle Scholar
  33. 33.
    R. J. Cohen, Cyclic AMP levels in Phycomyces during a response to light, Nature 251: 144 (1974).CrossRefGoogle Scholar
  34. 34.
    R. J. Cohen and M. M. Atkinson, Activation of Phycomyces adenosine 3’, 5’ monophosphate phosphodiesterase by blue light, Biochem. Biophys. Res. Commun. 83: 616 (1978).CrossRefGoogle Scholar
  35. 35.
    R. J. Cohen, Aberrant cyclic nucleotide regulation in a behavioral mutant of Phycomyces blakesleeanus, Plant Science Letters 13: 315 (1978).CrossRefGoogle Scholar
  36. 36.
    R. J. Cohen, Adenosine-3’, 5’-cyclic monophosphate phosphodiesterase from Phycomyces blakesleeanus, Phytochemistry 18: 943 (1979).CrossRefGoogle Scholar
  37. 37.
    R. J. Cohen, J. L. Ness and S. M. Whiddon, Adenylate Cyclase from Phycomyces sporangiophore, Phytochemistry 19: 1913 (1980).CrossRefGoogle Scholar
  38. 38.
    L. M. Passano and C. B. McCullough, Co-ordinating systems and behavour in Hydra. I. Pacemaker system of the periodic contractions, J. Exp. Biol. 41: 643 (1964).Google Scholar
  39. 39.
    C. Taddei-Ferretti and L. Cordella, Modulation of Hydra attenuata rhythmic activity: phase response curve, J. Exp. Biol. 65: 737 (1976).Google Scholar
  40. 40.
    C. Taddei-Ferretti, L. Cordella and S. Chillemi, Analysis of Hydra contraction behaviour, in: “Coelenterate Ecology and Behaviour”, G. 0. Mackie, ed., Plenum Press, New York (1976).Google Scholar
  41. 41.
    C. Taddei-Ferretti, Hydra attenuata rhythmic activity: ontogeny, mutual interaction and modulation by light of the different bioelectric activities, in: Proc. 5th meeting Ital. Soc. of Pure and Applied Biophysics, Perugia (1981).Google Scholar
  42. 42.
    D. Corda and M Shinitzky, in: “Biological Structure and Coupled Flows”, A. Oplatka, ed., M. Balaban (1983).Google Scholar
  43. 43.
    W. T. Griffiths, Characterization of the terminal stages of chlorophyllide synthesis in etioplast membrane preparations, Biochem. J. 152: 623 (1975).Google Scholar
  44. 44.
    R. E. Mapleston and W. T. Griffiths, Effects of illumination of whole barley plants on the protochlorophyllide activity system in the isolated plastid, Biochem. Soc. Trans. 5: 319 (1977).Google Scholar
  45. 45.
    R. E. Mapleston and W. T. Griffiths, Effects of illumination of etiolated leaves on the redox state of NADP in the plastids, FEBS Lett. 92: 168 (1978).CrossRefGoogle Scholar
  46. 46.
    R. E. Mapleston and W. T. Griffiths, Light modulation of the activity of protochlorophyllide reductase, Biochem. J. 189: 125 (1980).Google Scholar
  47. 47.
    R. P. Oliver and W. T. Griffiths, Covalent labelling of the NADPH: protochlorophyllide oxidoreductase from etioplast membranes with (3H)N-phenylmaleimide, Biochem. J. 195: 93 (1981).Google Scholar
  48. 48.
    K. Apel, The protochlorophyllide holochrome of barley. Phytochrome induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase, Eur. J. Biochem. 120: 89 (1981).CrossRefGoogle Scholar
  49. 49.
    J. Gressel and E. Galun, Morphogenesis in Trichoderma: photo-induction and RNA, Development Biol. 15: 575 (1967).CrossRefGoogle Scholar
  50. 50.
    J. Gressel and K. Hartmann, Morphogenesisin Tric.hoderma: action spectrum of photoinduced sporulation, Planta 79: 271 (1968).CrossRefGoogle Scholar
  51. 51.
    H. Senger and W. R. Briggs, The blue light photoreceptor(s): Primary reactions and subsequent metabolic changes, in: “Photochemical and Photobiological Reviews” Vol. 6, K. C. Smith, ed., Plenum Press, New York (1981).Google Scholar
  52. 52.
    B. Horwitz, S. Malkin and J. Gressel, Modified fluence-response curves of photoconidiation-defective mutants of Trichoderma,(submitted).Google Scholar
  53. 53.
    L. Fukshansky and H. Mohr, Boundary conditions for mathematical models in photomorphogenesis, in: “Photoreceptor and Plant Development”, J. De Greef, ed., Antwerpen University Press, Antwerpen (1980).Google Scholar
  54. 54.
    B. Horwitz and J. Gressel, Elevated riboflavin requirement for post-photoinductive events in sporulation of a Trichoderma auxotroph, Plant Physiol. (in press 1983).Google Scholar
  55. 55.
    J. L. Johnson, B. E. Hainline and K. V. Rajgopalan, Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase and nitrate reductase, J. Biol. Chem. 255: 1783 (1980).Google Scholar
  56. 56.
    M. G. Guerrero, J. M. Vega and M. Losada, The assimilatory nitrate-reducing system and its regulation, Ann. Rev. Plant Physiol. 82: 169 (1981).CrossRefGoogle Scholar
  57. 57.
    J. M. Maldonado, M. A. Vargas, S. G. Maurino and P. J. Aparicio, Inactivation by acetylene of spinach nitrate reductase, Biochim. Biophys. Acta 661: 112 (1981).CrossRefGoogle Scholar
  58. 58.
    P. J. Aparicio and J. M. Maldonado, Regulation of nitrate assimilation in photosynthetic organisms, in: “Nitrogen Assimilation of Plants”, E. J. Hewitt and C. V. Cutting, eds., Academic Press, London (1979).Google Scholar
  59. 59.
    S. G. Maurino, M. A. Vargas, P. J. Aparicio and J. M. Maldonado, Blue-light reactivation of spinach nitrate reductase inactivated by acetylene or cyanide. Effects of flavins and oxygen, Physiol. Plant. 57: 441 (1983).CrossRefGoogle Scholar
  60. 60.
    M. A. Vargas, S. G. Maurino, J. M. Maldonado and P.J. Aparicio, Photoinactivation of spinach nitrate reductase sensitized by flavin mononucleotide. Evidence for the involvement of singlet oxygen, Photochem. Photobiol. 36: 223 (1982)CrossRefGoogle Scholar
  61. 61.
    M. P. Azuara and P. J. Aparicio, In vivo blue-light activation of Chlamydomonas reinhardii nitrate reductase, Plant Physiol. 71: 286 (1983).CrossRefGoogle Scholar
  62. 62.
    V. Munoz and W. Butler, Photoreceptor pigment for blue light in Neurospora crassa, Plant Physiol. 55: 421 (1975).CrossRefGoogle Scholar
  63. 63.
    T. Y. Leong and W. R. Briggs, Partial purification and characterization of a blue light sensitive cytochrome flavin complex from corn membranes, Plant Physiol. 67: 1042 (1981).CrossRefGoogle Scholar
  64. 64.
    R. Caubergs, S. Widell, C. Larsson and J. A. De Greef, Comparison of two methods for the preparation of a membrane fraction of cauliflower inflorescences containing a blue light reducible b-type cytochrome, Physiol. Plant. (in press).Google Scholar
  65. 65.
    C. Larsson and B. Anderson, Two phase methods for chloroplasts, chloroplast elements and mitochondria, in: “Plant Organelles, Methodological Surveys”, Vol. 9 (b), E. Reid, ed., Ellis Horwood, Chichester (1979).Google Scholar
  66. 66.
    B. Lercari, The effect of far red light on the photoperiodic regulation of carbohydrate accumulation in Allium cepa L., Physiol. Plant. 54: 475 (1982).CrossRefGoogle Scholar
  67. 67.
    B. Lercari, Changes in invertase activities during the photo-periodically induced bulb formation of onion (Allium cepa L.), Physiol. Plant. 54: 480 (1982).CrossRefGoogle Scholar
  68. 68.
    B. Lercari and P. Micheli, Photoperiodic regulation of cytokinin levels in leaf blades of Allium cepa L., Plant Cell Physiol. 22: 501 (1981).Google Scholar
  69. 69.
    B. Lercari, The promoting effect of far-ref light on bulb formation in the long day plant Allium cepa L.,Plant Sci. Letters (in press).Google Scholar
  70. 70.
    S. M. Dawis and R. L. Purple, Adaptation in cones. A general model, Biophys. J. 39: 151 (1982).Google Scholar
  71. 71.
    D. E. Koshland, Jr., A. Goldbeter and J. B. Stock, Amplification and adaptation in regulatory and sensory systems, Science 217: 220 (1982).CrossRefGoogle Scholar
  72. 72.
    H. Matsumoto, J. E. O’Tousa and W. J. Pak, Light-induced modification of Drosophila retinal polypeptides in vivo, Science 217: 839 (1982).CrossRefGoogle Scholar
  73. 73.
    R. M. Tyrrel, Radiation synergism and antagonism, in: “Photochemical and Photobiological Reviews”, Vol. 3, K. C. Smith, ed., Plenum Press, New York (1978).Google Scholar
  74. 74.
    I. A. Magnus, The future prospects for lasers in dermatological photobiology, in: “Lasers in Photomedicine and Photobiology”, R. Pratesi and C. Sacchi, eds., Springer Verlag, Berlin Heidelberg New York (1980).Google Scholar
  75. 75.
    J. C. Sutherland and B. M. Sutherland, Human photoreactivating enzyme, action spectrum and safelight conditions, Biophys. J. 15: 435 (1975).CrossRefGoogle Scholar
  76. 76.
    S. Comorosan, The measurement process in biological systems: a new phenomenology, J. Theor. Biol. 51: 35 (1975).CrossRefGoogle Scholar
  77. 77.
    S. Passarella, E. Quagliariello, I. M. Catalano and A. Cingolani, The effect of laser irradiation on NADH and mitochondria, in: “Macromolecules in the Functioning Cell”, A. A. Bayev, ed., NAUKA Publ., Moscow (1982).Google Scholar
  78. 78.
    H. A. Lester, M. M. Nasse, M. E. Krouse, J. M. Nerbonne, N. H. Wassermann and B. F. Erlanger, Electrophysiological experiments with photoisomerizable cholinergic compounds: review and progress report, Ann. N. Y. Acad. Sci. 346: 475 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • B. F. Erlanger
    • 1
  • G. Montagnoli
    • 2
  • W. ShropshireJr.
    • 3
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Consiglio Nazionale delle RicerchePisaItaly
  3. 3.Smithsonian InstitutionRockvilleUSA

Personalised recommendations