Conformational Models of Light Energy Utilization in Photoreceptive Systems

  • Giorgio Montagnoli
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)


Three steps can be recognized when a response to light is evoked from a biological system. The primary event of absorption of a quantum of light by the photoreceptor is followed by transduction through dark processes in which amplification may occur and finally the system adapts to a new equilibrium.


Liquid Crystal Methyl Orange Cholesteric Liquid Crystal Conformational Model Potassium Oleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley Interscience, New York (1980).Google Scholar
  2. 2.
    D. L. Ross and J. Blanc, Photochromism by cis-trans isomerization, in: “Photochromism”, G. H. Brown, ed., Wiley Interscience, New York (1971).Google Scholar
  3. 3.
    R. C. Bertelson, Photochromic precesses involving heterolytic cleavage, in: “Photochromism”, G. H. Brown, ed., Wiley Interscience, New York (1971).Google Scholar
  4. 4.
    G. S. Hartley, The cis-form of azobenzene, Nature 140: 281 (1937).CrossRefGoogle Scholar
  5. 5.
    R. Lovrien, P. Peschek and W. Tisel, Protein and hydrogen ion control of photochromism in aminoazobenzene compounds, J. Am. Chem. Soc. 96:244 (1974).Google Scholar
  6. 6.
    D. C. Wilson and H. G. Drickamer, High pressure studies on spiropyrans, J. Chem. Phys. 63:3649 (1975).Google Scholar
  7. 7.
    W. Maier and A. Saupe, A simple molecular theory of the nematic crystalline-liquid state, Z. Naturforsch. 13a:564 (1958).Google Scholar
  8. 8.
    L. Onsager, The effects of shapes on the interaction of colloidal particles, Ann. N. Y. Acad. Sci. 51:527 (1949).Google Scholar
  9. 9.
    D. E. Martire, Thermodynamics of phase transitions, in: “The Molecular Physics of Liquid Crystals”, G. R. Lockhurst and G. W. Gray, eds., Academic Press, New York (1979).Google Scholar
  10. 10.
    G. Pelzl, Transformation of nematic into isotropic phase by photochemical isomerization, Z. Chem. 17:294 (1977); C. Leier and G. Pelzl, Phase transitions of liquid crystalline modifications by photochemical isomerization, J. Pract. Chem. 321:197 (1979).Google Scholar
  11. 11.
    H. Baessler and M. M. Labes, Helical twisting power of steroidal solutes in cholesteric mesophases, J. Chem. Phys. 52:631 (1970).Google Scholar
  12. 12.
    F. D. Saeva, Cholesteric liquid-crystal-induced circular dichroism in achiral solutes. A novel spectroscopic technique, J. Am. Chem. Soc. 94:5135 (1972).Google Scholar
  13. 13.
    F. D. Saeva, Liquid crystals, the fourth state of matter, Marcel Dekker, New York (1979).Google Scholar
  14. 14.
    T. Kunitake and Y. Okahata, Synthetic molecular membranes and their functions, in: “Advances in Solution Chemistry”, I. Bertini, L. Lunazzi and A. Dei, eds., Plenum Publishing Co., New York (1981).Google Scholar
  15. 15.
    K. L. Mittal, Micellization, solubilization and microemulsions, vols. 1 and 2, Plenum Press, New York (1977).Google Scholar
  16. 16.
    P. A. Winsor, Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure and theoretical significance of liquid crystalline compounds, Chem. Rev. 68:1 (1968).Google Scholar
  17. 17.
    M. Shimomura and T. Kunitake, Fusion and phase separation of ammonium bilayer membranes, Chem. Letters 1001 (1981).Google Scholar
  18. 18.
    T. Kunitake, N. Nakashima, M. Shimomura, Y. Okahata, K. Kano and T. Ogawa, Unique properties of chromophore-containing bilayer aggregates: enhanced chirality and photochemically induced morphological change, J. Am. Chem. Soc. 102:6642 (1980).Google Scholar
  19. 19.
    N. Nakashima, H. Fukushima and T. Kunitake, Spectral control of methyl orange and cyanine dyes by synthetic bilayer membranes, Chem. Letters 1555 (1981).Google Scholar
  20. 20.
    A. Cooper, Thermodynamic fluctuations in protein molecules, Proc. Natl. Acad. Sci. USA 73:2740 (1976).Google Scholar
  21. 21.
    G. Nemethy, W. Peer and H. A. Scheraga, Effect of protein--solvent interactions on protein conformation, Ann. Rev. Biophys. Bioeng. 10:459 (1981).Google Scholar
  22. 22.
    C. Tanford, Protein denaturation, Adv. Protein Chem. 23:121 (1968).Google Scholar
  23. 23.
    L. Cordone, A. Cupane, P. L. San Biagio and E. Vitrano, Effect of some organic co-solvents on the reaction of hemoglobin with oxigen, Biopolymers 20: 39 (1981).Google Scholar
  24. 24.
    M. Dreyfus, B. Vanderbunder and H. Buc, Stabilization of a phosphorylase b active conformation by hydrophobic solvents, FEBS Letters 95: 185 (1978).Google Scholar
  25. 25.
    P. Elodi, The effect of solvents on the activity of some enzymes, Acta Physiol. Acad. Sci. Hung.20:311 (1961).Google Scholar
  26. 26.
    E. Sackman, Photochemically induced reversible color change in cholesteric liquid crystals, J. Am. Chem. Soc. 93:7088 (1981).Google Scholar
  27. 27.
    B. Schnuriger and J. Bourdon, Photoisomérization dans le milieux mésomorphes cholestériques. Influence sur le propriétés optiques du milieu, J. Chim. Phys. 73:795 (1976).Google Scholar
  28. 28.
    K. Kano, Y. Tanaka, T. Ogawa, M. Shimomura and T. Kunitake, Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible cis--trans isomerization of azobenzenes, Photochem. Photobiol. 34:323 (1981).Google Scholar
  29. 29.
    D. Balasubramanian, S. Subramani and C. Kumar, Modification of a model membrane structure by embedded photochrome, Nature 254: 252 (1975).Google Scholar
  30. 30.
    S. Barbaric and P. L. Luisi, Micellar solubilization of bio-polymers in organic solvents, J. Am. Chem. Soc. 103:4239 (1981).Google Scholar
  31. 31.
    K. Martinek and I. V. Berezin, Artificial light-sensitive enzymatic systems as chemical amplifiers of weak light signals, Photochem. Photobiol. 29:637 (1979).Google Scholar
  32. 32.
    I. Karube, Y. Nakamoto and S. Suzuki, Photocontrol of urease activity in spiropyran collagen membrane, Biochim. Biophys. Acta 445:774 (1976).Google Scholar
  33. 33.
    Y. Nakamoto, I. Karube, S. Terawaki and S. Suzuki, Photocontrol of lactate dehydrogenase-spiropyran collagen membrane, J. Solid-Phase Biochem. 1: 143 (1976).Google Scholar
  34. 34.
    Y. Nakamoto, I. Karube, S. Terawaki, M. Nishida and S. Suzuki, Photocontrol of trypsin-spirobenzopyran membrane activity, J. Ferment. Technol. 55:409 (1977).Google Scholar
  35. 35.
    I. Karube, I. Ishimori and S. Suzuki, Photocontrol of affinity chromatography. I. Trypsin purification by photosensitive soybean trypsin inhibitor (STI) gel, Anal. Biochem. 86:100 (1978).Google Scholar
  36. 36.
    I. Nakamoto, I. Karube, I. Kobayashi, M. Nishida and S. Suzuki, Amino acid esterification by a-chymotrypsin immobilized in spiropyran membrane, Arch. Biochem. Biophys. 193:117 (1979).Google Scholar
  37. 37.
    W. W. Cleland, Steady state kinetics, in: “The Enzymes”, P. D. Boyer, ed., vol. 2, Academic Press, New York (1970).Google Scholar
  38. 38.
    B. F. Erlanger, N. H. Wassermann, A. C. Cooper and R. J. Monk, Allosteric activation of the hydrolysis of specific substrates by chymotrypsin, Eur. J. Biochem. 61:287 (1976).Google Scholar
  39. 39.
    M. Aizawa, K. Namba and S. Suzuki, Photocontrol of enzyme activity of a-amylase, Arch. Biochem. Biophys. 180:41 (1977).Google Scholar
  40. 40.
    M. Aizawa, K. Namba and S. Suzuki, Light-induced enzyme activity changes associated with the photoisomerization of bound spiropyran, Arch. Biochem. Biophys. 182:305 (1977).Google Scholar
  41. 41.
    G. Montagnoli, E. Balestreri, L. Nannicini, A. Bellucci and M. Bracaloni, pH controlled diazo coupling of aldolase: selsctive formation of diazothioether chromophore and retention of enzyme activity, Int. J. Peptide Protein Res. 11:28 (1978).Google Scholar
  42. 42.
    S. Monti, G. Montagnoli and L. Nannicini, Isomerization of (Z)-arenediazo thioethers on aldolase and model compounds, J. Am. Chem. Soc. 99:3808 (1977).Google Scholar
  43. 43.
    G. Montagnoli, S. Monti, L. Nannicini and R. Felicioli, Azoaldolase photosensitivity, Photochem. Photobiol. 23:39 (1976).Google Scholar
  44. 44.
    G. Montagnoli, S. Monti, L. Nannicini, M. Ciovannitti and M. G. Ristori, Photomodulation of azoaldolase activity, Photochem. Photobiol. 27:43 (1978).Google Scholar
  45. 45.
    G. Montagnoli, S. Monti and L. Nannicini, Chemical and photochemical properties of the p-carboxybenzene diazothioether of N-acetyl-L-cysteine in water, Gazz. Chim. Ital. 105:559 (1975).Google Scholar
  46. 46.
    I. V. Berezin, S. D. Varfolomeev, A. M. Klibanov and K. Martinek, Intermediate compounds in enzyme catalysis and their kinetic investigation, Russ. Chem. Rev. 43: 363 (1974).Google Scholar
  47. 47.
    G. Van der Veen, R. Hoguet and W. Prins, Photoregulation of polymer conformation by photochromic moieties-II. Cationic and neutral moieties on an anionic polymer, Photochem. Photobiol. 19:197 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Giorgio Montagnoli
    • 1
  1. 1.C.N.R. - Istituto di BiofisicaPisaItaly

Personalised recommendations