Advertisement

Photomodulation of Enzymes

  • Daniel H. Hug
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

Light is an important environmental signal. An organism survives by its ability to adapt to the conditions of its environment; many organisms are known to respond to light and photoresponsive molecules are widespread in nature. The interaction of light with an enzyme is one of the possible means for biological systems to respond. Light may influence either an increase or decrease in enzyme activity; thus light affects the chemistry of the cell. These processes can be very complex (e.g., photomodulation of chloroplast enzymes) or they can be remarkably simple (e.g., photoactivation of urocanase). Reversion is an essential part of photomodulation.

Keywords

Nitrate Reductase Pyrimidine Dimer Streptomyces Griseus Hypo Taurine Chloroplast Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. Galston, Plant Physiol. 54: 427 (1974).CrossRefGoogle Scholar
  2. 2.
    H. Shichi and C. N. Rafferty, Photochem. Photobiol. 31:631 (1980).Google Scholar
  3. 3.
    D. H. Hug, Photochem. Photobiol. Rev. 6:87 (1981).Google Scholar
  4. 4.
    L. Purec and A. I. Krasna, Proc. Natl. Acad. Sci. U.S.A. 57:1416 (1967).Google Scholar
  5. 5.
    W. L. Butler, K. H. Norris, H. W. Siegelman and S. B. Hendricks, Proc. Natl, Acad. Sci. U.S.A. 45:1703 (1959).Google Scholar
  6. 6.
    C. S. Rupert, J. Gen. Physiol. 43:573 (1960).Google Scholar
  7. 7.
    A. Marcus, Plant Physiol. 35: 126 (1960).CrossRefGoogle Scholar
  8. 8.
    H. Ziegler and I. Ziegler, Planta 65: 369 (1965).CrossRefGoogle Scholar
  9. 9.
    H. Kaufman, S. M. Vratsanos and B. F. Erlanger, Science 162: 1487 (1968).Google Scholar
  10. 10.
    W. H. Miller, R. E. Gorman and M. W. Bitensky, Science 174: 295 (1971).CrossRefGoogle Scholar
  11. 11.
    L. E. Anderson, A. R. Ashton, A. H. Mohamed and R. Scheibe, BioScience 32: 103 (1982).CrossRefGoogle Scholar
  12. 12.
    D. H. Hug and J. K. Hunter, J. Bacteriol. 102:874• (1970).Google Scholar
  13. 13.
    A. Kelner, Proc. Natl. Acad. Sci. U.S.A. 35:73 (1949).Google Scholar
  14. 14.
    A. Keiner, J. Bacteriol. 58: 511 (1949).Google Scholar
  15. 15.
    B. F. Erlanger and N. H. Wassermann, in: “Trends in Photobiology”, C. Helene, M. Charlier, Th. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York (1982).Google Scholar
  16. 16.
    J. C. Sutherland and B. M. Sutherland, Biophys. J. 15:435 (1975).Google Scholar
  17. 17.
    R. J. Cremer, P. W. Perryman and D. H. Richards, Lancet 1: 1994 (1958).Google Scholar
  18. 18.
    D. H. Hug, Photochem. Photobiol. Rev. 3:1 (1978).Google Scholar
  19. 19.
    P. Schopfer, Annu. Rev. Plant Physiol. 28:223 (1977).Google Scholar
  20. 20.
    B. B. Buchanan, Annu. Rev. Plant Physiol. 31:341 (1980).Google Scholar
  21. 21.
    J. Diamond, J. A. Schiff and A. Keiner, Arch. Biochem. Biophys. 167:603 (1975).Google Scholar
  22. 22.
    A. K. Verma, N. J. Lowe and R. K. Boutwell, Cancer Res. 39: 1035 (1979).Google Scholar
  23. 23.
    S. D. Wainwright, Can. J. Biochem. 53:438 (1975).Google Scholar
  24. 24.
    D. Balasubramanian, S. Subramani and C. Kumar, Nature (London) 254: 252 (1975).Google Scholar
  25. 25.
    B. B. Buchanan, R. A. Wolosiuk and P. Schürmann, Trends Biochem. Sci. 4:93 (1979).Google Scholar
  26. 26.
    H. Nakamoto and T. Sugiyama, Plant Physiol. 69: 749 (1982).CrossRefGoogle Scholar
  27. 27.
    A. H. Mohamed and L. E. Anderson, Arch. Biochem. Biophys. 209:606 (1981).Google Scholar
  28. 28.
    A. R. Ashton and L. E. Anderson, Biochim. Biophys. Acta 638:242 (1981).Google Scholar
  29. 29.
    B. F. Erlanger, Annu. Rev. Biochem. 45:267 (1976).Google Scholar
  30. 30.
    G. Montagnoli, S. Monti, L. Nannicini, M. P. Giovannitti and M. G. Ristori, Photochem. Photobiol. 27:43 (1978).Google Scholar
  31. 31.
    H. Harm, in:“Photochemistry and Photobiology of Nucleic Acids, Vol. 2, Biology”, S. Y. Wang, ed., Academic Press, New York (1976).Google Scholar
  32. 32.
    M. Weller, N. Virmaux and P. Mandel, Proc. Natl. Acad. Sci. U.S.A. 72:381 (1975).Google Scholar
  33. 33.
    V. Massey, in: “Photoreception and Sensory Transduction in Aneural Organisms”, F. Lenci and G. Colombetti, eds., Plenum Press, New York (1980).Google Scholar
  34. 34.
    H. Senger and W. R. Briggs, Photochem. Photobiol. Rev. 6:1 (1981).Google Scholar
  35. 35.
    P. Hemmerich and W. Schmidt, in: “Photoreception and Sensory Transduction in Aneural Organisms”, F. Lenci and G. Colombetti, eds., Plenum Press, New York (1980).Google Scholar
  36. 36.
    E. Klemm and H. Ninnemann, Photochem. Photobiol. 29:629 (1979).Google Scholar
  37. 37.
    H. Ninnemann, Photochem. Photobiol. 35:391 (1982).Google Scholar
  38. 38.
    K. L. Wun, A. Gih and J. C. Sutherland, Biochemistry 16: 921 (1977).Google Scholar
  39. 39.
    N. Iwatsuki, C. O. Joe and H. Werbin, Biochemistry 19: 1172 (1980).CrossRefGoogle Scholar
  40. 40.
    H. Harm and C. S. Rupert, Mutation Res. 34: 75 (1976).CrossRefGoogle Scholar
  41. 41.
    D. H. Hug, P. S. O’Donnell and J. K. Hunter, Photobiochem. Photobiophys. 3:175 (1981).Google Scholar
  42. 42.
    D. H. Hug and J. K. Hunter, J. Bacteriol. 151: 813 (1982).Google Scholar
  43. 43.
    D. H. Hug, P. S. O’Donnell and J. K. Hunter, J. Biol. Chem. 253:7622 (1978).Google Scholar
  44. 44.
    D. H. Hug, P. S. O’Donnell and J. K. Hunter, Biochem. Biophys. Res. Commun. 18:1435 (1978).Google Scholar
  45. 45.
    D. Roth and D. H. Hug, Radiat. Res. 50: 94 (1972).CrossRefGoogle Scholar
  46. 46.
    T. Bersin, Hoppe-Seyler’s Z. Physiol. Chem. 222:177 (1933).Google Scholar
  47. 47.
    J. F. Baugher and L. I. Grossweiner, Photochem. Photobiol. 22:163 (1975).Google Scholar
  48. 48.
    P. S. O’Donnell and D. H. Hug, unpublished (1982).Google Scholar
  49. 49.
    G. Montagnoli, S. Monti, L. Nannicini and R. Felicioli, Photochem. Photobiol. 23:29 (1976).Google Scholar
  50. 50.
    W. T. Griffiths, FEBS Lett. 49: 196 (1974).CrossRefGoogle Scholar
  51. 51.
    J. S. Pober and M. W. Bitensky, Adv. Cyclic Nucleotide Res. 11:265 (1979).Google Scholar
  52. 52.
    J-P. P. Jacquot, B. B. Buchanan, F. Martin and J. Vidal, Plant Physiol. 68: 300 (1981).CrossRefGoogle Scholar
  53. 53.
    D. H. Hug, D. Roth and J. K. Hunter, Physiol. Chem. Phys. 3:353 (1971).Google Scholar
  54. 54.
    G. Wald, Science 150: 1028 (1965).CrossRefGoogle Scholar
  55. 55.
    F. Giffhorn and G. Gottschalk, J. Bacteriol. 124:1046 (1975).Google Scholar
  56. 56.
    K. N. Kuan, Y. Y. Lee, L. Tebbetts and P. Melius, Biotechnol. Bioeng. 21:443 (1979).Google Scholar
  57. 57.
    K. N. Kuan, Y. Y. Lee and P. Melius, Biochem. J. 177:981 (1979).Google Scholar
  58. 58.
    J. M. Roldân, F. Calero and P. J. Aparicio, Z. Pflanzenphysiol. 90: 467 (1978).Google Scholar
  59. 59.
    R. Tischner and A. Hüttermann, Plant Physiol. 62: 284 (1978).CrossRefGoogle Scholar
  60. 60.
    H. Augsten and D. Michel, Z. Pflanzenphysiol. 192: 1 (1981).Google Scholar
  61. 61.
    R. Yee and P. A. Liebman, J. Biol. Chem. 253:8902 (1978).Google Scholar
  62. 62.
    R. J. Cohen and M. M. Atkinson, Biochem. Biophys. Res. Commun. 83:616 (1978).Google Scholar
  63. 63.
    J. D. Mills and G. Hind, Biochim. Biophys. Acta 547:455 (1979).Google Scholar
  64. 64.
    M. Baltscheffsky and A. Lundin, in: “Cation Flux in Biomembranes”, Y. Mukohata and L. Packer, eds., Academic Press, New York (1979).Google Scholar
  65. 65.
    S. M. Thacher, Biochemistry 17: 3005 (1978).CrossRefGoogle Scholar
  66. 66.
    J. A. Miller, R. Paulsen and M. D. Bownds, Biochemistry 16: 2633 (1977).CrossRefGoogle Scholar
  67. 67.
    R. Alfonzo and N. Nelson, Fed. Proc. 38: 333 (1979).Google Scholar
  68. 68.
    J. Bennett, FEBS Lett. 103: 342 (1979).CrossRefGoogle Scholar
  69. 69.
    A. L. Lehninger, “Biochemistry”, Worth Publishers, Inc., New York (1970).Google Scholar
  70. 70.
    R. M. Egan and A. T. Phillips, J. Biol. Chem. 252:5701 (1977).Google Scholar
  71. 71.
    W. Harm, in: “Molecular Mechanisms for Repair of DNA, Part A”, P. C. Hanawalt and R. B. Setlow, eds., Plenum Press, New York (1975).Google Scholar
  72. 72.
    B. S. Rosenstein, Photochem. Photobiol. 35:491 (1982).Google Scholar
  73. 73.
    N. Muraoka, A. Okuda and M. Ikenaga, Photochem. Photobiol. 32:193 (1980).Google Scholar
  74. 74.
    T. Chiang and C. S. Rupert, Photochem. Photobiol. 30:525 (1979).Google Scholar
  75. 75.
    A. D. Woodhead and P. M. Achey, Comp. Biochem. Physiol. 63B:73 (1979).Google Scholar
  76. 76.
    H. Smith, in: “Trends in Photobiology”, C. Helene, M. Charlier, Th. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York (1982).Google Scholar
  77. 77.
    T. R. C. Sisson, in: “Trends in Photobiology”, C. Helene, M. Charlier, Th. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York (1982).Google Scholar
  78. 78.
    H. Morrison, G. Pandey, C. Bernasconi, D. Avnir and I. Tessman, Am. Soc. Photobiol., Abstr. Progr. 9:143 (1981).Google Scholar
  79. 79.
    D. H. Hug and D. E. Roth, Biochemistry 10: 1397 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Daniel H. Hug
    • 1
  1. 1.Bacteriology Research Laboratory Veterans Administration Medical Center and Department of Internal MedicineUniversity of IowaIowa CityUSA

Personalised recommendations