Advertisement

Physiology and Genetics of C4-Dicarboxylate Transport in Rhodobacter capsulatus

  • David J. Kelly
  • Mark J. Hamblin
  • Jonathan G. Shaw
Part of the FEMS Symposium book series (FEMSS)

Abstract

Of those carbon sources traditionally used in studies on purple non-sulphur bacteria, the C4-dicarboxylic acids malate and succinate have long been known to be particularly effective in promoting fast growth rates and producing high cell yields under both photo- and chemoheterotrophic growth conditions (Stahl and Sojka, 1973). In Rhodobacter capsulatus, the iron-sulphur centre associated with succinate dehydrogenase is in redox equilibrium with the quinone pool (Zanonni and Ingledew, 1983), so that in addition to providing cell carbon, succinate can also act as a direct electron donor. Alternatively, under different circumstances, the reduction of fumarate to succinate may act as a redox poising mechanism for the removal of excess reducing equivalents (McEwan et al., 1985).

Keywords

Rhodobacter Capsulatus Malate Transport Minus Malate Dicarboxylate Transport Malate Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, G. F.-L., 1988, Structure and mechanism of bacterial periplasmic transport systems, J. Bioenerg. Biomembr., 20: 1.PubMedCrossRefGoogle Scholar
  2. Colbeau, A., Godfroy, A., and Vignais, P.M., 1986, Cloning of DNA fragments carrying hydrogenase genes of Rhodopseudomonas capsulata, Biochemie., 68: 147.CrossRefGoogle Scholar
  3. Elferink, M.G.L., Hellingwerf, K.J., van Belkum, F.J., Poolman, B., and Konings, W.N., 1984, Direct interaction between linear electron transfer chains and solute transport systems in bacteria, FEMS Microbiol Letts., 21: 293.CrossRefGoogle Scholar
  4. Finan, T.M., Wood, J.M., and Jordan., D.C., 1981, Succinate transport in Rhizobium leauminosarum, J. Bacteriol., 148: 193.PubMedGoogle Scholar
  5. Gibson, J., 1975, Uptake of C4-dicarboxylates and pyruvate by Rhodopseudomonas sphaeroides, J. Bacteriol., 123: 471.PubMedGoogle Scholar
  6. Gutowski, S.J., and Rosenberg, H., 1975, Succinate uptake and related proton movements in Escherichia coli K12, Biochem. J., 152: 647.PubMedGoogle Scholar
  7. Karzanov, V.V., and Ivanovsky, R.N., 1980, Sodium dependent succinate uptake in purple bacterium Ectothiorhodospira shaposhnikovii, Biochim. Biophys Acta., 598: 91.PubMedCrossRefGoogle Scholar
  8. Jorgensen, P.A., Rothstein, S.J., and Reznikoff, W.S., 1979, A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol. Gen. Genet., 177: 65.PubMedCrossRefGoogle Scholar
  9. Kay, W.W., and Kornberg, H., 1969, Genetic control of the uptake of C4-dicarboxylic acids by Escherichia coli FEBS Letts., 3: 93.CrossRefGoogle Scholar
  10. Kelly, D.J., Richardson, D.J., Ferguson, S.J. and Jackson J.B., 1988, Isolation of transposon Tn5 insertion mutants of Rhodobacter capsulatus unable to reduce trimethylamine-N-oxide and dimethylsulphoxide, Arch. Microbiol., 150: 138.CrossRefGoogle Scholar
  11. Lo, T.C.Y., and Sanwal, B.D., 1975, Genetic analysis of mutants of Escherichia coli defective in dicarboxylate transport, Mol. Gen. Genet., 140: 303.PubMedGoogle Scholar
  12. McEwan, A.G., Cotton, N.P.J., Ferguson, S.J., and Jackson, J.B., 1985, The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria, Biochim. Biophys. Acta., 810: 140.CrossRefGoogle Scholar
  13. Pirt, S.J., 1975, “Principles of Microbe and Cell Cultivation”. Blackwell. Oxford.Google Scholar
  14. Ronson, C.W., Astwood, P.M., and Downie, J.A., 1984, Molecular cloning and genetic organisation of C4dicarboxylate transport genes from Rhizobium lequminosarum, J.Bacteriol., 160: 903.PubMedGoogle Scholar
  15. Stahl, C.L., and Sojka, G.A., 1973, Growth of Rhodopseudomonas capsulata on L- and D- malic acid, Biochim. Biophys. Acta., 299: 241.CrossRefGoogle Scholar
  16. Weaver, P.F., Wall, J.D., and Gest, H., 1975, Characterisation of Rhodopseudomonas capsulata, Arch. Microbiol., 105: 207.PubMedCrossRefGoogle Scholar
  17. Willison, J.C., 1988, Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus J. Gen. Microbiol., 134: 2429.Google Scholar
  18. Zannoni, D., and Ingledew, W.J., 1983, A functional characterisation of the membrane bound iron sulphur centres of Rhodopseudomonas capsulata, Arch. Microbiol., 135: 176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • David J. Kelly
    • 1
  • Mark J. Hamblin
    • 1
  • Jonathan G. Shaw
    • 1
  1. 1.Robert Hill Institute Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK

Personalised recommendations