Advertisement

Picosecond Energy Transfer Kinetics between Different Pigment Pools in Chlorosomes from the Green Bacterium Chloroflexus Aurantiacus

  • Kai Griebenow
  • Marc G. Müller
  • Alfred R. Holzwarth
Part of the FEMS Symposium book series (FEMSS)

Abstract

Chloroflexus aurantiacus a thermophilic green bacterium, contains at least four different bacteriochlorophyll (BChI)-complexes which are coupled in a specific way to optimize the energy transfer from the main antenna, the so-called chlorosome, to the reaction center (1–4). Chlorosomes contain about 1000 – 16000 BChI c molecules (5) which are believed to be organized in rod-like substructures (6). Two BCh1 a-protein complexes function as intermediate pigment pools. The BChl a790 complex is believed to be the first and the B 806–866 complex the second one in the energy transfer chain from the chlorosome to the reaction center (1,2). Energy transfer studies have been carried out in the past using steady state measurements (1,2), as well as picosecond absorption (7), and picosecond fluorescence measurements (2,8). The samples used were either membranes and whole cells or isolated chlorosomes containing BChI a790. We have recently reported on the preparation of chlorosomes free from bound BCh1 a790 (9). In this report we compare the energy transfer kinetics in both types of chlorosomes.

Keywords

Sucrose Density Gradient Centrifugation Green Bacterium Pigment Pool Green Photosynthetic Bacterium Energy Transfer Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Betti,J.A., Blankenship,R.E., Natarajan,L.V., Fuller,R.C. and Dickinson,L.C. Biochim. Biophys. Acta 680, 194–201 (1982).CrossRefGoogle Scholar
  2. (2).
    Brune,D.C., King,G.H., Infosino,A., Steiner,T., Thewalt,M.L.W. and Blankenship,R. E. Biochemistry 26, 8652–8658 (1987).CrossRefGoogle Scholar
  3. (3).
    Van Dorssen,R.J., Vasmel,H. and Amesz,J. Photosynth. Res. 9, 33–45 (1986).CrossRefGoogle Scholar
  4. (4).
    van Dorssen,R.J., Vos,M., and Amesz,J. in Photosynthetic Light—Harvesting Systems, (eds. H. Scheer and S. Schneider)531–541 (de Gruyter, Berlin, New York 1988 ).Google Scholar
  5. (5).
    Golecki,J.R. and Oelze,J. Arch. Microbiol. 148, 236–241 (1987).CrossRefGoogle Scholar
  6. (6).
    Staehelin,L.A., Golecki,J.R., Fuller,R.C. and Drews,G. Arch. Mikrobiol. 119, 269–277 (1978).CrossRefGoogle Scholar
  7. (7).
    Vos,M., Nuijs,A.M., van Grondelle,R., van Dorssen,R.J., Gerola,P.D. and Amesz,J. Biochim. Biophys. Acta 891, 275–285 (1987).CrossRefGoogle Scholar
  8. (8).
    Fetisova,Z.G., Freiberg,A.M. and Timpmann,K.E. Nature 334, 633–634 (1988).CrossRefGoogle Scholar
  9. (9).
    Griebenow,K. and Holzwarth,A.R. Biochim. Biophys. Acta 973, 235–240 (1989).Google Scholar
  10. (10).
    Feick,R.G., Fitzpatrick,M. and Fuller,R.C. J. Bacteriol. 150, 905–915 (1982).PubMedGoogle Scholar
  11. (11).
    Holzwarth,A.R., Wendler,J. and Suter,G.W. Biophys. J. 51, 1–12 (1987).Google Scholar
  12. (12).
    Blankenship,R.E., Brune,D.C., Freeman,J.M., Trost,J.T., King,G.H., McManus,J.H., Nozawa,T., and Wittmershaus,B.P., in Green Photosynthetic Bacteria (eds. Olson, J., Ormerod, J.G., Amesz, J., Stackebrandt, E., and Trüper, H.G.) 57–68 ( Plenum Press, New York 1988 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kai Griebenow
    • 1
  • Marc G. Müller
    • 1
  • Alfred R. Holzwarth
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim/RuhrGermany

Personalised recommendations