Advertisement

Competition between Trapping and Annihilation in Rps. Viridis Probed by Fast Photovoltage Measurements

  • H.-W. Trissl
  • J. Deprez
  • A. Dobek
  • W. Leibl
  • G. Paillotin
  • J. Breton
Part of the FEMS Symposium book series (FEMSS)

Abstract

The study of exciton transfer, exciton-exciton interaction, and primary charge separation in the photosynthetic membrane requires excitation by picosecond flashes. If a significant fraction of the reaction centers (RCs) is closed by a single flash, the excitation density reaches a level where several excitons reside in the pool of antenna pigments at the same time. Then excitons can be lost by singlet-singlet annihilation before they are trapped by the primary photochemistry in the RC. Furthermore, annihilation leads to an apparent acceleration of all other reactions connected with the exciton dynamics. As will be shown, the quantitative treatment of this competitive deactivation path allows to determine molecular parameters that characterize a given antenna system.

Keywords

Purple Bacterium Quench Rate Constant Trapping Time Primary Charge Separation Photosynthetic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fowler, C. F., and Kok, B., 1974, Direct observation of a light-induced electric field in chloroplasts, Biochim. Biophys. Acta, 357: 308.CrossRefGoogle Scholar
  2. 2.
    Witt, H.T. and Zickler, A., 1973, Electrical evidence for the field indicating absorption change in bioenergetic membranes, FEBS Lett., 37: 307.PubMedCrossRefGoogle Scholar
  3. 3.
    Deprez, J., Paillotin, G., Dobek, A., Leibl, W., Trissl, H.-W., and Breton, J., 1989, Competition between energy trapping and exciton annihilation in the lake model of the photosynthetic membrane of purple bacteria, Biochim. Biophys. Acta, xxx: in the press.Google Scholar
  4. 4.
    Trissl, H.-W., Breton, J., Deprez, J., Dobek, A., and Leibl, W., 1989, Trapping kinetics, annihilation, and quantum yield in the photosynthetic purple bacterium Rps. viridis as revealed by electric measurment of the primary charge separation, Biochim. Biophys. Acta, xxx: in the press.Google Scholar
  5. 5.
    Trissl, H.-W., Leibl, W., Deprez, J., Dobek, A., and Breton, J., 1987, Trapping and annihilation in the antenna system of photosystem I, Biochim. Biophys. Acta, 839: 320.CrossRefGoogle Scholar
  6. 6.
    Groma, G., Szabo, J., and Varo, Gy., 1984, Direct measurement of picosecond charge separation in bacteriorhodopsin. Nature 308: 557.CrossRefGoogle Scholar
  7. 7.
    Trissl, H.-W., Gärtner, W., and Leibl, W., 1989, Reversed picosecond charge displacement from the photoproduct K of bacteriorhodopsin demonstrated photoelectrically, Chem. Phys. Lett., 158: 515.CrossRefGoogle Scholar
  8. 8.
    Leibl, W., and Trissl, H.-W., 1989, Relationship between the fraction of closed photosynthetic reaction centers and the amplitude of the photovoltage from light-gradient experiments, Biochim. Biophys. Acta, xxx: in the press.Google Scholar
  9. 9.
    Deisenhofer, J., Epp, O., Miki, R., Huber, R., and Michel, H., 1984, X-ray structure analysis of a membrane protein complex, J. Mol. Biol., 180: 395.CrossRefGoogle Scholar
  10. 10.
    Dobek, A., Deprez, J., Paillotin, G., Leibl, W., Trissl, H.-W., and Breton, J., 1989, Excitation trapping efficiency and kinetics in Rb. shaeroides R26 whole cells probed by photovoltage measurements in the picosecond time scale, Biochim. Biophys. Acta, xxx: in the press.Google Scholar
  11. 11.
    Trissl, H.-W., and Leibl, W., 1989, Primary charge separation in photosystem II involves two electrogenic steps, FEBS Lett., 244: 85.CrossRefGoogle Scholar
  12. 12.
    Leibl, W., Breton, J., Deprez, J., and Trissl, H.-W., 1989, Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes, Photosynth. Res., xxx: in the press.Google Scholar
  13. 13.
    Carithers, R. P., and Parson, W. W., 1975, Delayed fluorescence from Rhodopseudomonas viridis following single flashes, Biochim. Biophys. Acta, 387: 194.CrossRefGoogle Scholar
  14. 14.
    Scherer, P. O. J., Fischer, S. F., Hörber, J. K. H., and Michel-Beyerle, M. E., 1986, On the temperature dependence of the long wavelength fluorescence and absorption of Rhodopseudomonas viridis reaction canters, in “Antennas and reaction centers of photosynthetic. bacteria,” M. E. Michel-Beyerle, ed., Springer Verlag, Berlin.Google Scholar
  15. 15.
    Woodbury, N. W., and Parson, W. W., 1986, Nanosecond fluorescence from chromatophores of Rb. sphaeroides and R. rubrum, Biochim. Biophys. Acta, 850: 197.PubMedCrossRefGoogle Scholar
  16. 16.
    Schatz, G. H., Brock, H., and Holzwarth, A. R., 1988, Kinetik and energetic model for the primary processes in photosystem II, Biophys. J., 54: 397.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H.-W. Trissl
    • 1
  • J. Deprez
    • 2
  • A. Dobek
    • 3
  • W. Leibl
    • 1
  • G. Paillotin
    • 2
  • J. Breton
    • 2
  1. 1.Abt. BiophysikFB Biologie/Chemie, UniversityOsnabrückGermany
  2. 2.Dept. BiologieCentre d’Etudes Nucléaires de SaclayGif-Sur-YvetteFrance
  3. 3.Institute of PhysicsA. Mickiewicz UniversityPoznanPoland

Personalised recommendations