Assembly of Chlorosomes during Photosynthetic Development in Chloroflexus aurantiacus

  • T. E. Redlinger
  • S. J. Theroux
  • D. L. Driscoll
  • S. J. Robinson
  • R. C. Fuller
Part of the FEMS Symposium book series (FEMSS)


The chlorosome of the green photosynthetic bacterium, Chloroflexus aurantiacus, contains rod elements composed of Bchl c complexed with a 5.6 kDa protein. This protein, termed the Bchl c-binding protein, dimerizes to form subunits which assemble into rods. This Bchl c pigment-protein complex functions in harvesting light and transferring energy with nearly 100 percent efficiency to the Bchl-a located in the chlorosome baseplate, the cytoplasmic membrane (CM), and finally to the reaction center. Surrounding the rod elements is a special envelope which appears in electron micrographs to have characteristics of an unusual lipid protein monolayer. Two proteins, Mr 11,000 and 18,000 KDa, are closely associated with the surface of rthe chlorosome and appear to be integral components of this envelope (1,2,3,4).


Carboxy Terminus Scenedesmus Obliquus High Molecular Weight Complex Carboxy Terminal Domain Green Photosynthetic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sprague, S.G., L.A. Staehelin, M.J. DiBartolomeis, and R.C. Fuller (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J. Bacteriol. 147: 1021–1031.PubMedGoogle Scholar
  2. 2.
    Sprague, S.G., L.A. Staehelin, and R.C. Fuller (1981) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J. Bacteriol. 147: 1032–1039.PubMedGoogle Scholar
  3. 3.
    Feick, R.G., and R.C. Fuller (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23: 3693–3700.CrossRefGoogle Scholar
  4. 4.
    Betti, J.A.. R.E. Blankenship, L.V. Natagajan, L.C. Dickinson and R.C. Fuller (1982) Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus. BBA 680: 194–201.CrossRefGoogle Scholar
  5. 5.
    Foster, J., T.E. Redlinger, R. Blankenship, and R.C. Fuller (1986) Oxygen regulation of the photosynthetic membrane system in Chloroflexus aurantiacus. J. Bacteriol. 147: 655–659.Google Scholar
  6. 6.
    Redlinger, T.E., and R.C. Fuller (1985) Protein processing as a regulatory mechanism in the synthesis of the photosynthetic antenna in Chloroflexus. Arch. Microbiol. 141: 344–347.Google Scholar
  7. 7.
    Fuller, R.C., and T.E. Redlinger (1985) Light and oxygen regulation of the development of the photosynthetic apparatus in Chloroflexus aurantiacus. In K.E. Steinbeck, S. Bonitz, C.J. Arntzen, and L. Bogorad (ed.), Molecular biology of the photosynthetic apparatus, pp. 155 - 162. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  8. 8.
    Robinson, S.J. amd T.E. Redlinger (1987) Isolation of genes encoding the photosynthetic apparatus of Chloroflexus. In: J. Biggins, ed. Proceedings of VII Internationl Congress on Photosynthesis. Vol. IV: 740–744.Google Scholar
  9. 9.
    Wechsler, T. F. Suter, R.C. Fuller, and H. Zuber (1985) The complete amino acid sequence of the bactriochlorophyll c binding polypeptide of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS. Lett. 181: 173–178.Google Scholar
  10. 10.
    Toneguzzo, F., S. Glynn, E. Levi, S. Mjolness, and A. Hayday (1988) Use of a chemically modified T7 DNA polymerase for manual and automated sequencing of supercoiled DNA. BioTechniquies 6: 460–469.Google Scholar
  11. 11.
    Devereux, J.R., P. Haeberli, and O. Smithies (1984) A comprehensive set of sequence analysis programs for the VAX. Necl. Acids. Res. 12: 386–395.Google Scholar
  12. 12.
    Selden, R.F. (1987) Denaturation of RNA ufins formaldehyde. p. 5. In F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G.Seidman, J.A. Smith, and K. Struhl (ed.) Current protocols in molecular biology. John Wiley, New York.Google Scholar
  13. 13.
    Theroux, S.J., T.E. Redlinger, R.C. Fuller and S.J. Robinson. Carboxy terminal extension for the bacteriochlorophyll c binding protein of Chloroflexus aurantiacus predicted from the nucleotide sequence of csmA J. Bact. (in press).Google Scholar
  14. 14.
    Gould, S.J., G.-A. Keller, and S. Subramani (1987) Identification to a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell. Biol. 105: 2923–2931.Google Scholar
  15. 15.
    Small, G.M., L.J. Szabo, and P.B. Lazarow (1988) Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 7: 1167–1173.PubMedGoogle Scholar
  16. 16.
    Swindels, B.W., R. Evers, and P. Borst (1988) The topogenic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension. EMBO J. 7: 1159–1165.Google Scholar
  17. 17.
    Verner, K., and G. Schatz (1988) Protein translocation across membranes. Science 241: 1307–1313.PubMedCrossRefGoogle Scholar
  18. 18.
    Diner, B.A., D.F. Ries, B.N. Cohen, and J.G. Metz (1988) COOHterminal processing of polypeptide Dl of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. J. Biol. Chem. 263: 8972–8980.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • T. E. Redlinger
    • 1
  • S. J. Theroux
    • 1
  • D. L. Driscoll
    • 1
  • S. J. Robinson
    • 1
  • R. C. Fuller
    • 1
  1. 1.Department of Biochemistry and BotanyUniversity of MassachusettsAmherstUSA

Personalised recommendations